*L*₂-REPRESENTATIONS AND A PLANCHEREL-TYPE THEOREM FOR PARABOLIC SUBGROUPS

BY FREDERICK W. KEENE

Communicated by S. S. Chern, July 18, 1974

Let G be a semisimple Lie group with Iwasawa decomposition G = KAN. In this note we give a precise condition for the existence of square-integrable representations of the nilpotent subgroup N. In that case we write down a Plancherel formula for the solvable subgroup AN. Full details and complete proofs will appear in a later paper.

These results are in essence part of the author's doctoral dissertation [1]. He would like to thank Professor Joseph A. Wolf for his patient advice and encouragement.

I. L_2 -representations of the nilpotent subgroup N. Let N be a unimodular locally compact group. Let π be an irreducible unitary representation of N on a Hilbert space $H(\pi)$. Then π is square-integrable (or L_2) if there are nonzero vectors x_1 and x_2 in $H(\pi)$ such that

$$\int_{N/Z} |(\pi(s)x_1, x_2)|^2 \ d\mu(s) < \infty$$

where Z is the center of N and $d\mu(s)$ denotes integration over N/Z with respect to a Haar measure μ on N/Z.

If N is a connected simply connected nilpotent Lie group with Lie algebra n, let Z and \mathfrak{z} be the respective centers on N and n. Let \mathfrak{n}^* , \mathfrak{z}^* be the respective linear duals of n, \mathfrak{z} . Define an alternating bilinear form b_f on n by $b_f(x, y) = f([x, y])$ for $f \in \mathfrak{n}^*$ and [,] the multiplication for n. If $f \in \mathfrak{z}$, we can extend f trivially to n and define b_f on $\mathfrak{n}/\mathfrak{z}$. Moore and Wolf [3] have shown the following:

PROPOSITION 1. N has L_2 -representations if and only if there exists an $f \in \mathfrak{z}^*$ such that b_f is nondegenerate on $\mathfrak{n}/\mathfrak{z}$.

AMS (MOS) subject classifications (1970). Primary 22D10, 22E25, 22E45, 43A30, 43A65.

Key words and phrases. Parabolic subgroup, semisimple Lie group, Plancherel theorem, nonunimodular group, square-integrable representations, solvable subgroups of type AN. Copyright © 1975, American Mathematical Society