THE CONJUGACY PROBLEM AND CYCLIC AMALGAMATIONS

BY SEYMOUR LIPSCHUTZ
Communicated by Dock S. Rim, July 14, 1974

Max Dehn first posed the word and conjugacy problems for groups, and solved these problems [2] for the fundamental group G_{k} for an orientable 2-manifold of genus k. This group has the presentation

$$
G_{k}=\left(a_{1}, b_{1}, \cdots, a_{k}, b_{k} ; a_{1}^{-1} b_{1}^{-1} a_{1} b_{1} \cdots a_{k}^{-1} b_{k}^{-1} a_{k} b_{k}=1\right) .
$$

We note that $G_{\boldsymbol{k}}$ is a free product of two free groups with a cyclic amalgamation generated by nonpowers.

The author generalized Dehn's result [3] by solving the conjugacy problem for any free product of free groups with a cyclic amalgamation. On the other hand, Miller [5] gave an example of a free product of two free groups amalgamating finitely generated subgroups which has an unsolvable conjugacy problem. Thus a cyclic amalgamation seems an essential criteria in finding classes of groups with solvable conjugacy problems. (For notational convenience we will speak of a free product "amalgamating u and v " when we mean "amalgamating the cyclic subgroups generated by u and v ".)

Anshel and Stebe solved the conjugacy problem [1] for certain HNN extensions where the underlying group is free and the extension is obtained by an isomorphism of cyclic subgroups. Following Anshel and Stebe, we say that an element h in a group G is non-self-conjugate if its distinct powers are in different conjugacy classes. We will also say that h is power-solvable if for any \boldsymbol{w} in G we can decide whether or not w is a power of h. (A group has a solvable power problem if all its elements are power-solvable.) We note that every nonidentity element in a free group is non-self-conjugate and powersolvable.

We now are able to state our main result which clearly generalizes Dehn's result.

