SUMS OF k TH POWERS IN THE RING OF POLYNOMIALS WITH INTEGER COEFFICIENTS

by ted chinburg and melvin henriksen ${ }^{1}$
Communicated by Robert Fossum, August 1, 1974
Suppose R is a ring with identity element and k is a positive integer. Let $J(k, R)$ denote the subring of R generated by its k th powers. If Z denotes the ring of integers, then $G(k, R)=\{a \in Z: a R \subset J(k, R)\}$ is an ideal of Z.

Let $Z[x]$ denote the ring of polynomials over Z and suppose $a \in R$. Since the map $p(x) \longrightarrow p(a)$ is a homomorphism of $Z[x]$ into R, the wellknown identity (see [3, p. 325])

$$
\begin{equation*}
k!x=\sum_{i=0}^{k-1}(-1)^{k-1-i}\binom{k-1}{i}\left\{(x+i)^{k}-i^{k}\right\} \tag{1}
\end{equation*}
$$

in $Z[x]$ tells us that $k!\in G(k, Z[x]) \subseteq G(k, R)$. Since Z is a cyclic group under addition, this shows that $G(k, R)$ is generated by its minimal positive element, which we denote by $m(k, R)$. Abbreviating $m(k, Z[x])$ by $m(k)$, we then have $m(k, R) \mid m(k)$ and $m(k) \mid k!$.

Thus $m(k)$ is the smallest positive integer a for which there is an identity of the form

$$
\begin{equation*}
a x=\sum_{i=1}^{n} a_{i}\left[g_{i}(x)\right]^{k} \tag{2}
\end{equation*}
$$

where $a_{1}, \cdots, a_{n} \in Z$ and $g_{1}(x), \cdots, g_{n}(x) \in Z[x]$.
On differentiating (2) with respect to x we have $k \mid m(k)$. Thus if R is any ring with identity,

$$
\begin{equation*}
k|m(k), \quad m(k, R)| m(k), \quad \text { and } \quad m(k) \mid k! \tag{3}
\end{equation*}
$$

For any $k \geqslant 1$ in Z, let $P_{1}(k)$ denote the set of primes less than k that divide k, and let $P_{2}(k)$ denote the set of primes less than k that fail to divide k. If p is a prime and $r \geqslant 1, m>1$ are integers, then a number

AMS (MOS) subject classifications (1970). Primary 10M05, 10B25, 12C15; Secondary 13 F 20 .
${ }^{1}$ We are indebted to H . Edgar and W . LeVeque for valuable references.

