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In this note, we announce several approximation theorems on Rieman
nian manifolds as well as some of their consequences. First recall the relevant 
définitions. Let M be a Riemannian manifold. A function ƒ: M —• R is 
called convex iff its restriction to each geodesic is a convex function of one 
variable. A function ƒ on M is called strictly convex iff given any compact 
K CM, there exists an e > 0 such that for every geodesic r(t) parame
terized by arc-length and defined on (s,s) with r(0) GAT, AT(S)) + AT(S)) 
- 2/(r(0)) > es2 for all s C (0, e). A function ƒ is subharmonic iff it is 
everywhere a subsolution of the Dirichlet problem, i.e. if B is a sufficiently 
small geodesic ball and u is a harmonic function such that u — f on the 
boundary of B, then u > f everywhere in B. If ƒ is C2, ƒ is subharmon
ic iff A/ > 0, where A = the Riemannian metric Laplacian. For a C2ff we 
define ƒ to be strictly subharmonic iff Af> 0. If ƒ is merely continuous, 
we say ƒ is strictly subharmonic iff at each x €E M, there exists a C2 

strictly subharmonic f0 near x such that ƒ - f0 is subharmonic near x. 
Suppose M is a complex manifold, not necessarily equipped with a 

Riemannian metric. A real-valued C2 function ƒ on M is called strictly 
plurisubharmonic iff d'à"f is a positive definite Hermitian form at each point. 
For a continuous function ƒ, we say ƒ is strictly plurisubharmonic iff 
at each point x EM, one can find a C2 strictly plurisubharmonic function 
f0 near x such that f-f0 is plurisubharmonic near x. 

In the following, S will denote any one of the following subsets of the 
ring of real-valued functions on M: (A) convex functions, (B) continuous 
subharmonic functions, (C) continuous plurisubharmonic functions on a com
plex manifold, (D) continuous plurisubharmonic functions on a complex 
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