GROUP ACTIONS AND CURVATURE

BY KARSTEN GROVE, HERMANN KARCHER AND ERNST A. RUH¹ Communicated by S. S. Chern, March 19, 1973

1. Introduction. The purpose of this note is to outline a proof of the following result: Any isometric action of a compact Lie group G on a 1-connected, compact Riemannian manifold M whose curvature tensor R is sufficiently close to the curvature tensor R_0 of the standard sphere S^n of the same dimension is equivalent to an isometric action of G on S^n .

We measure the proximity of R and R_0 in terms of the eigenvalues of the curvature transformation $R: V \land V \rightarrow V \land V$, where V = T(M). A Riemannian manifold M is called *strongly* δ -pinched if the eigenvalues λ of the curvature transformation at all points of M satisfy the condition $\delta < \lambda \leq 1$.

2. Statement of results. The main result is as follows:

THEOREM. There exists a $\delta_0 < 1$, such that for any 1-connected, compact, strongly δ -pinched n-dimensional Riemannian manifold M, and any compact Lie group G the following holds:

If $\delta > \delta_0$ and $\mu: G \times M \rightarrow M$ is an isometric action of G on M, then

(1) there exists a diffeomorphism $F: M \rightarrow S^n$;

- (2) there exists a homomorphism $\omega: G \rightarrow O(n+1)$ such that
- (3) $\omega(g) = F \circ \mu(g, \cdot) \circ F^{-1}$ for all $g \in G$.

The following two corollaries are immediate consequences.

COROLLARY 1. Any compact, strongly δ -pinched Riemannian manifold M with $\delta > \delta_0$ is diffeomorphic to a space of constant curvature 1.

Together with Wolf's [4] classification of manifolds with constant curvature 1, this corollary gives a classification up to diffeomorphism of compact, strongly δ -pinched Riemannian manifolds with $\delta > \delta_0$. In addition, the isometry group of such a manifold is isomorphic to a subgroup of the isometry group of the corresponding manifold with constant curvature.

AMS (MOS) subject classifications (1970). Primary 53C20, 57E25; Secondary 22E60.

Key words and phrases. Almost constant map, Campbell-Hausdorff formula, center of mass, conjugate group actions, strong δ -pinching.

¹ This work was done under the program "Sonderforschungsbereich Theoretische Mathematik" (SFB 40) at the University of Bonn.