ACOUSTIC BOUNDARY CONDITIONS

BY J. THOMAS BEALE AND STEVEN I. ROSENCRANS Communicated by H. Weinberger, May 28, 1974

In this paper we announce results in the study of the wave equation

(1)
$$\phi_{tt} = \Delta \phi$$

subject to what we call acoustic boundary conditions. The physical model giving rise to these conditions is that of a gas undergoing small irrotational perturbations from rest in a domain G with smooth compact boundary. We assume that each point of the surface ∂G acts like a spring in response to the excess pressure in the gas, and that there is no transverse tension between neighboring points of ∂G , i.e., the "springs" are independent of each other. (Such a surface is called locally reacting; see [2, pp. 259-264].)

If the boundary has mass per unit area m, resistivity d, and spring constant k (all nonnegative functions on ∂G), then the displacement $\delta(x, t)$ into the domain of a point $x \in \partial G$ at time t must satisfy the spring equation

(2)
$$m\delta_{tt} + d\delta_t + k\delta = - \text{ excess pressure} = \rho_0 \phi_t$$

where ρ_0 is the unperturbed density of the gas and $\phi(x, t)$ is the velocity potential. Continuity of the normal velocity between the gas and the boundary implies the relation $\delta_t(x, t) = -\phi_n(t, x - n\delta(x, t)), x \in \partial G$, where *n* is the outward normal. We consider here the linearized approximation obtained by assuming δ is small (this is consistent with the linearization leading to the wave equation). Thus we assume

(3)
$$\delta_t(x, t) = -\phi_n(x, t).$$

Note that if d and k are zero, (2) and (3) imply $m\phi_{nt} + \rho_0\phi_t = 0$; thus the excess pressure satisfies the Robin boundary condition.

If ϕ and δ are smooth solutions of (1)-(3), and ϕ has compact support in space for each t if G is unbounded, it is easy to see that the energy form

AMS (MOS) subject classifications (1970). Primary 35L05, 35P25, 76Q05.

Copyright © 1974, American Mathematical Society