SPECTRAL THEORY FOR BOUNDARY VALUE PROBLEMS FOR ELLIPTIC SYSTEMS OF MIXED ORDER

BY GIUSEPPE GEYMONAT AND GERD GRUBB

Communicated by Robert Seeley, May 28, 1974

Introduction. For a closed, densely defined linear operator T in a Hilbert space H, we define the essential spectrum ess sp T as the complement in C of the set of λ for which $T-\lambda$ is a Fredholm operator (with possibly nonzero index). Recall (cf. Wolf [7]) that $\lambda \in \operatorname{ess}$ sp T if and only if either $T-\lambda$ or $T^*-\overline{\lambda}$ has a singular sequence, i.e. a sequence $u_k \in H$ with $\|u_k\|=1$ for all $k, (T-\lambda)u_k \longrightarrow 0$ (or $(T^*-\overline{\lambda})u_k \longrightarrow 0$) in H, but u_k having no convergent subsequence in H. ess sp T is closed and invariant under compact perturbations of T, and contains the accumulation points of the eigenvalue spectrum.

Let $\overline{\Omega}$ be an *n*-dimensional compact C^{∞} manifold with boundary Γ and interior $\Omega = \overline{\Omega} \backslash \Gamma$. It is well known that when A is a properly elliptic operator on $\overline{\Omega}$ of order r > 0, the L^2 -realization $A_{\mathcal{B}} : u \longmapsto Au$ with domain $D(A_{\mathcal{B}}) = \{u \in L^2(\Omega) | Au \in L^2(\Omega), \mathcal{B}u|_{\Gamma} = 0\}$, defined by a boundary operator \mathcal{B} that covers A (i.e. $\{A, \mathcal{B}\}$ defines an elliptic boundary value problem), has ess sp $A_{\mathcal{B}} = \emptyset$.

However, when A is a system of mixed order, elliptic in the sense of Douglis and Nirenberg (cf. [1]), ess sp A_B can be nonempty even when $\{A, B\}$ is elliptic with smooth coefficients and $\overline{\Omega}$ is compact. We study this phenomenon for a class of Douglis-Nirenberg systems of nonnegative order, determine the essential spectrum, and find the asymptotic behavior of the discrete spectrum at $+\infty$ for the selfadjoint lower bounded realizations.

Examples of the systems we consider are: The linearized Navier-Stokes operator and certain systems stemming from nuclear reactor analysis. A preliminary, less advanced account of the theory was given in [5].

1. Preliminaries.

1.1. For q integer > 1 there is given a set of integers $m_1 \ge m_2 \ge$

AMS (MOS) subject classifications (1970). Primary 35J45, 47B30, 35P20.