SPECTRAL THEORY FOR BOUNDARY VALUE PROBLEMS FOR ELLIPTIC SYSTEMS OF MIXED ORDER

BY GIUSEPPE GEYMONAT AND GERD GRUBB
Communicated by Robert Seeley, May 28, 1974

Introduction. For a closed, densely defined linear operator T in a Hilbert space H, we define the essential spectrum ess sp T as the complement in \mathbf{C} of the set of λ for which $T-\lambda$ is a Fredholm operator (with possibly nonzero index). Recall (cf. Wolf [7]) that $\lambda \in \operatorname{ess}$ sp T if and only if either $T-\lambda$ or $T^{*}-\bar{\lambda}$ has a singular sequence, i.e. a sequence $u_{k} \in H$ with $\left\|u_{k}\right\|=1$ for all $k,(T-\lambda) u_{k} \rightarrow 0\left(\right.$ or $\left.\left(T^{*}-\bar{\lambda}\right) u_{k} \rightarrow 0\right)$ in H, but u_{k} having no convergent subsequence in H. ess sp T is closed and invariant under compact perturbations of T, and contains the accumulation points of the eigenvalue spectrum.

Let $\bar{\Omega}$ be an n-dimensional compact C^{∞} manifold with boundary Γ and interior $\Omega=\bar{\Omega} \backslash \Gamma$. It is well known that when A is a properly elliptic operator on $\bar{\Omega}$ of order $r>0$, the L^{2}-realization $A_{B}: u \mapsto \mathrm{~A} u$ with domain $D\left(A_{B}\right)=\left\{u \in L^{2}(\Omega)\left|A u \in L^{2}(\Omega), B u\right|_{\Gamma}=0\right\}$, defined by a boundary operator B that covers A (i.e. $\{A, B\}$ defines an elliptic boundary value problem), has ess sp $A_{\mathrm{B}}=\varnothing$.

However, when A is a system of mixed order, elliptic in the sense of Douglis and Nirenberg (cf. [1]), ess sp A_{B} can be nonempty even when $\{A, B\}$ is elliptic with smooth coefficients and $\bar{\Omega}$ is compact. We study this phenomenon for a class of Douglis-Nirenberg systems of nonnegative order, determine the essential spectrum, and find the asymptotic behavior of the discrete spectrum at $+\infty$ for the selfadjoint lower bounded realizations.

Examples of the systems we consider are: The linearized Navier-Stokes operator and certain systems stemming from nuclear reactor analysis. A preliminary, less advanced account of the theory was given in [5].

1. Preliminaries.

1.1. For q integer >1 there is given a set of integers $m_{1} \geqslant m_{2} \geqslant$

