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Introduction. For a closed, densely defined linear operator T in a Hu
bert space H, we define the essential spectrum ess sp T as the complement 
in C of the set of X for which T - X is a Fredholm operator (with pos
sibly nonzero index). Recall (cf. Wolf [7] ) that X G ess sp T if and only if 
either T — X or 71* — X has a singular sequence, i.e. a sequence ukGH with 
\\uk\\ = 1 for all k, (T - X)uk —> 0 (or ( 7 * - \)uk —> 0) in H, but 
uk having no convergent subsequence in H. ess sp T is closed and invariant 
under compact perturbations of T9 and contains the accumulation points of 
the eigenvalue spectrum. 

Let £2 be an ^-dimensional compact C°° manifold with boundary V 

and interior £2 = Û\F. It is well known that when A is a properly elliptic 
operator on £2 of order r > 0, the L2-realization A# : u I—• Au with 
domain D(A g ) = {u G L2(Sl)\ Au G L2(Sl), Bu\T = 0}, defined by a bound
ary operator B that covers A (i.e. {A, B} defines an elliptic boundary 
value problem), has ess sp A% = 0 . 

However, when A is a system of mixed order, elliptic in the sense of 
Douglis and Nirenberg (cf. [1]), ess sp A$ can be nonempty even when 
{A,B} is elliptic with smooth coefficients and £2 is compact. We study 
this phenomenon for a class of Douglis-Nirenberg systems of nonnegative order, 
determine the essential spectrum, and find the asymptotic behavior of the dis
crete spectrum at + °° for the selfadjoint lower bounded realizations. 

Examples of the systems we consider are: The linearized Navier-Stokes 
operator and certain systems stemming from nuclear reactor analysis. A pre
liminary, less advanced account of the theory was given in [5]. 

1. Preliminaries. 
1.1. For q integer > 1 there is given a set of integers mx > m2 > 
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