EVERY CLOSED ORIENTABLE 3-MANIFOLD IS A 3-FOLD BRANCHED COVERING SPACE OF S³ BY HUGH M. HILDEN 1 Communicated by William Browder, March 20, 1974 Let $p: M \longrightarrow N$ be a nondegenerate simplicial map between compact triangulated manifolds of the same dimension n. This is a branched covering space if the restriction of p, called \widetilde{p} , gives a covering space map $\widetilde{p}: M - (n-2 \text{ skeleton}) \longrightarrow N - (n-2 \text{ skeleton})$. The set of points x in M such that p does not map any neighborhood of x homeomorphically into N is called the branch cover B. The (n-2)-dimensional set p(B) is called the branch set. J. W. Alexander asserted the following theorem [1]. ALEXANDER'S THEOREM. Every closed orientable 3-manifold is a branched covering space of S^3 with the branch set a link in S^3 . For a proof see [5]. The purpose of this paper is to announce the following result. THEOREM 1. Every closed orientable 3-manifold is an irregular 3-sheeted branched covering of S^3 with branch set a knot. We shall only sketch the proof of the theorem. A detailed proof will appear elsewhere. The main part of the proof consists of constructing a certain irregular 3-fold branched covering of the 3-ball, D^3 , by a handlebody of genus g, X_g , with branch set A, a set of g+2 proper arcs, and observing that for this particular branched covering any homeomorphism ψ of ∂X_g is isotopic to a homeomorphism ϕ that projects to a homeomorphism ϕ of ∂D^3 . ϕ necessarily leaves the branch set $A \cap \partial D^3$ invariant as a set. Moreover we can choose ϕ and ϕ so that ϕ induces a cyclic permutation on the branch set. Let i(i) be the map that identifies X_g with X_g' (D^3 with $D^{3'}$) restricted to the AMS (MOS) subject classifications (1970). Primary 55A10, 57A10; Secondary 55A25. Key words and phrases. Branched covering, 3-manifold, knot, link. ¹ This work was supported by NSF grant GP-34059.