THE HOPF RING FOR COMPLEX COBORDISM ${ }^{1}$

BY DOUGLAS C. RAVENEL AND W. STEPHEN WILSON
Communicated by Edgar Brown, Jr., May 13, 1974

It is our purpose here to announce the results of our study of the homology of the spaces in the Ω-spectrum for complex cobordism and BrownPeterson cohomology. Let $M U(n)$ be the standard Thom complex. $M U_{k}=$ $\lim _{n \rightarrow \infty} \Omega^{2(n-k)} M U(n)$ is the $2 k$ space in the Ω-spectrum for complex cobordism. We will consider the space $\mathbf{M} U=\lim _{n \rightarrow-\infty} \Pi_{j>n} \mathbf{M} U_{j}$. We find this product easier to study than the separate factors, as will become apparent below.

For a space X we have $[X, M U] \simeq U^{2 *}(X)$, the even degree part of the complex cobordism of X. Because $M U$ is a multiplicative theory, $U^{2 *}(X)$ is a ring and $\mathbf{M} U$ is a commutative ring with identity in the homotopy category. Thus we have that for any field $k, H_{*}(\mathrm{M} U ; k)$ is a commutative ring with identity in the category of k-coalgebras, i.e., it is a "Hopf ring".

In more common language, the homology has two products and a coproduct. - will denote the multiplicative product which comes from the ring structure on the spectrum, while $*$ will denote the additive product coming from the loop structure $\left(\Omega^{2} \mathbf{M} U \simeq \mathbf{M} U\right.$). They obey the following distributive law: if $\psi(z)=\Sigma z^{\prime} \otimes z^{\prime \prime}$ is the coproduct, then $z \circ(x * y)=$ $\Sigma\left(z^{\prime} \circ x\right) *\left(z^{\prime \prime} \circ y\right)$.

We now describe the structure of $H_{*}(\mathrm{M} U ; R)$ where R is an algebra over a field k. Let

$$
C_{R}(X)=\left\{x \in \prod_{i \geqslant 0} H_{i}(X ; R): \psi(x)=x \hat{\otimes} x, x \neq 0\right\} .
$$

$C_{R}(\mathrm{M} U)$ is a ring, and for each $x \in C_{R}(X)$ we have a ring homomorphism $\lambda_{x}: U^{2 *}(X) \rightarrow C_{R}(\mathbf{M} U)$ defined by $\lambda_{x}(u)=u_{*}(x)$ for $u \in U^{2 *}(X)$. Let

AMS (MOS) subject classifications (1970). Primary 55F40, 57D90, 57F25, 57F35; Secondary 57F05, 55F20, 16A24, 14L05, 18 D 35.

Key word and phrases. Complex cobordism, homology, Hopf ring, formal group law, Ω-spectrum, Eilenberg-Moore spectral sequence, classifying space.
${ }^{1}$ Both authors partially supported by NSF.

