THE SPACE OF CLASS α BAIRE FUNCTIONS

BY J. E. JAYNE

Communicated by Jacob Feldman, December 6, 1973

ABSTRACT. Let X, Y be compact Hausdorff spaces and $B^*_{\alpha}(X)$, $B^*_{\beta}(Y)$, $0 \le \alpha$, $\beta \le \Omega$ (the first uncountable ordinal), the associated Banach spaces of bounded real-valued Baire functions of classes α and β . If $B^*_{\alpha}(X) \ne B^*_{\beta}(X)$ (which is the case if $\alpha \ne \beta$ and X is not dispersed), then $B^*_{\alpha}(X)$ is neither linearly isometric to $B^*_{\beta}(Y)$ nor equivalent to $B^*_{\beta}(Y)$ in several other ways. $B^*_{\Omega}(X)$ is linearly isometric to $B^*_{\Omega}(Y)$ if and only if X is Baire isomorphic to Y. For $1 \le \alpha < \Omega$ the maximal ideal space of $B^*_{\alpha}(X)$ for a nondispersed compact space X is not an F-space.

1. Let X be a compact (more generally, completely regular) Hausdorff space and C(X) the space of continuous real-valued functions on X. Let $B_0(X) = C(X)$, and inductively define $B_{\alpha}(X)$ for each ordinal $\alpha \leq \Omega$ (Ω denotes the first uncountable ordinal) to be the space of pointwise limits of sequences of functions in $\bigcup_{\xi < \alpha} B_{\xi}(X)$. Let $B^*_{\alpha}(X)$ be the space of bounded functions contained in $B_{\alpha}(X)$. With the pointwise operations $B_{\alpha}(X)$ and $B^*_{\alpha}(X)$ are lattice-ordered algebras. With the supremum norm $B^*_{\alpha}(X)$ is a Banach algebra (see [4, §41]).

The Baire sets of X of multiplicative class α , denoted by $Z_{\alpha}(X)$, are defined to be the zero sets of functions in $B^*_{\alpha}(X)$. Those of additive class α , denoted by $CZ_{\alpha}(X)$, are defined as the complements of sets in $Z_{\alpha}(X)$. Finally, those of ambiguous class α , denoted by $A_{\alpha}(X)$, are the sets which are simultaneously in $Z_{\alpha}(X)$ and $CZ_{\alpha}(X)$. With the set-theoretic operations of union and intersection, $A_{\alpha}(X)$ is a Boolean algebra for each $\alpha \leq \Omega$. The sets of exactly ambiguous class α , denoted by $EA_{\alpha}(X)$, are those in $A_{\alpha}(X) \setminus \bigcup_{\xi < \alpha} A_{\xi}(X)$. The sets of exactly additive and exactly multiplicative class α are defined analogously. The class of all Baire subsets of X is $Z_{\Omega}(X)$.

AMS (MOS) subject classifications (1970). Primary 06A65, 26A21, 28A05, 46E15, 46E30, 46J10, 54C50, 54H05; Secondary 04A15.

Key words and phrases. Banach space, Baire function, Baire class.

Copyright © 1974, American Mathematical Society