UNITARY NILPOTENT GROUPS AND HERMITIAN K-THEORY. I

BY SYLVAIN E. CAPPELL ${ }^{1}$
Communicated by William Browder, February 19, 1974

This announcement computes the Wall surgery obstruction groups of amalgamated free products of finitely presented groups by using the new UNil functors introduced below. Special cases of these results [C4] were obtained as consequences of the splitting theorems of [C3]. The present results use the general results on manifold decomposition outlined in [C7]. Further applications to the study of manifolds and submanifolds, Poincaré duality spaces, diffeomorphism groups, and Novikov's conjecture [C8] will be presented elsewhere.

1. UNil of bimodules with involution. Let R be a ring with unit and involution. Let M be an R-bimodule with involution; i.e. M is equipped with a homomorphism $x \rightarrow \bar{x}$ satisfying $\overline{\bar{x}}=x,(\alpha x \beta)^{-}=\bar{\beta} \bar{x} \bar{\alpha}, x \in M$, $\alpha, \beta \in R$. Call M hyperbolic if there is a decomposition of R-bimodules $M=N \oplus \bar{N}, \bar{N}=\{\bar{x} \mid x \in N \subset M\}$.

By a $(-1)^{k}$ Hermitian form over M we mean a triple (P, λ, μ) where P is a finitely generated free right R-module and $\lambda: P \times P \rightarrow M, \mu: P \rightarrow$ $M /\left\{x-(-1)^{k} \tilde{x} \mid x \in M\right\}$ satisfy:
(i) for $x \in P$ fixed, $y \rightarrow \lambda(x, y)$ is an R-homomorphism $P \rightarrow M$;
(ii) $\lambda(x, y)=(-1)^{k}(\lambda(y, x))^{-}, x, y \in P$;
(iii) $\lambda(x, x)=\mu(x)+(-1)^{k}(\mu(x))$ in $M, x \in P$;
(iv) $\mu(x+y)=\mu(x)+\mu(y)+\lambda(x, y), x, y \in P$;
(v) $\mu(x \alpha)=\bar{\alpha} \mu(x) \alpha, x \in P, \alpha \in P$.

Let M_{1} and M_{2} be R-bimodules with involution which are free left R-modules. A (resp; simple) $(-1)^{k}$ UNil form over $\left(M_{1}, M_{2}\right)$ is $C=$ $\left(P_{1}, \lambda_{1}, \mu_{1} ; P_{2}, \lambda_{2}, \mu_{2}\right)$ with $P_{2}=P_{1}^{*}$ and $\left(P_{i}, \lambda_{i}, \mu_{i}\right)$ a $(-1)^{k}$ Hermitian form over $M_{i}, i=1,2$, for which there exist finite filtrations of R-modules

$$
\begin{aligned}
& P_{1}=P_{1}^{0} \supset P_{1}^{1} \supset P_{1}^{2} \supset \cdots \supset P_{1}^{n}=0, \\
& P_{2}=P_{2}^{0} \supset P_{2}^{1} \supset P_{2}^{2} \supset \cdots \supset P_{2}^{m}=0
\end{aligned}
$$

so that, letting $\rho_{1}=P_{1} \rightarrow P_{2} \otimes_{R} M_{1}$ denote the adjoint of λ_{1} and $\rho_{2}: P_{2} \rightarrow$ $P_{1} \otimes_{R} M_{2}$ denote the adjoint of λ_{2},

$$
\rho_{1}\left(P_{1}^{i}\right) \subset P_{2}^{i+1} \otimes_{R} M_{1}, \quad \rho_{2}\left(P_{2}^{i}\right) \subset P_{1}^{i+1} \otimes_{R} M_{2}, \quad i \geqq 0
$$

[^0]
[^0]: AMS (MOS) subject classifications (1970). Primary 16A54, 20C05, 57A35, 57C35, 57D20, 57D40, 57D65, 18F25; Secondary 57D80, 18F30, 20H25, 20E30, 57B10, 16A26.
 ${ }^{1}$ The author is an A. P. Sloan fellow and was partially supported by an N.S.F. grant.

