UNBOUNDED OPERATORS WITH SPECTRAL CAPACITIES

BY I. ERDELYI

Communicated by Robert Bartle, January 15, 1974

The concept of spectral capacity introduced by C. Apostol in [1] and its relationship to decomposable operators [3] established by a theorem of C. Foias [4] are used for an investigation in the unbounded case.

Let $\mathfrak{S}(X)$ denote the family of subspaces (closed linear manifolds) of a Banach space X, and let \mathfrak{F} and \mathfrak{R} represent the collection of closed and compact subsets of the complex plane π , respectively. The superscript c stands for the complement.

1. DEFINITION [1]. A spectral capacity in X is an application $\mathfrak{E}:\mathfrak{F} \to \mathfrak{S}(X)$ which satisfies the following conditions:

(i) $\mathfrak{E}(\emptyset) = \{0\}, \mathfrak{E}(\pi) = X;$

(ii) $\bigcap_{n=1}^{\infty} \mathfrak{E}(F_n) = \mathfrak{E}(\bigcap_{n=1}^{\infty} F_n), \{F_n\} \subset \mathfrak{F};$

(iii) for every finite open cover $\{G_i\}_{1 \le i \le m}$ of $F \in \mathfrak{F}, \mathfrak{E}(F) = \sum_{i=1}^{m} \mathfrak{E}(F \cap \overline{G}_i)$.

In order to confine the present investigation to densely defined operators on X, the following additional constraint on the spectral capacity is needed:

2. DEFINITION. A spectral capacity \mathfrak{E} will be referred to as regular if the linear manifold

$$X_0 = \{ x \in \mathfrak{E}(K) \colon K \in \mathfrak{R} \}$$

is dense in X.

3. DEFINITION. A linear operator $T: D(T) (\subseteq X) \rightarrow X$ is said to possess a regular spectral capacity \mathfrak{E} (abbrev. $T \in \mathfrak{T}(\mathfrak{E})$) if it is closed, has a nonvoid resolvent set and satisfies the following conditions:

(iv) $\mathfrak{E}(K) \subseteq \mathfrak{D}(T)$ for all $K \in \mathfrak{R}$;

(v) $T(\mathfrak{E}(F) \cap \mathfrak{D}(T)) \subseteq \mathfrak{E}(F)$ for all $F \in \mathfrak{F}$;

(vi) the restriction $T_F = T | \mathfrak{E}(F) \cap \mathfrak{D}(T)$ has the spectrum $\sigma(T_F) \subseteq F$, $F \in \mathfrak{F}$.

4. THEOREM. Given $T \in \mathfrak{T}(\mathfrak{S})$. For every $K \in \mathfrak{K}$, the restriction $T_K = T | \mathfrak{S}(K)$ is a (bounded) decomposable operator on $\mathfrak{S}(K)$ possessing the

Copyright © American Mathematical Society 1974

AMS (MOS) subject classifications (1970). Primary 47B99; Secondary 47A15, 47B40.

Key words and phrases. Unbounded operators, spectral capacity, decomposable operators, spectral maximal spaces, weak spectral manifolds.