INJECTIVE STABILITY FOR K_2 OF LOCAL RINGS

BY R. KEITH DENNIS¹ AND MICHAEL R. STEIN²

Communicated by Hyman Bass, April 3, 1974

It has been conjectured for some time [St2], [D], [S-D], [D-S2] that for a semilocal ring R, the homomorphisms $\theta_n: K_2(n, R) \rightarrow K_2(n+1, R)$, known to be surjective for all $n \ge 2$ [St2], [S-D], are in fact isomorphisms for $n \ge 3$. Various special cases have been proved, most notably the difficult theorem of Matsumoto for fields [Ma, Corollaire 5.11] and the case of discrete valuation rings [D-S1]. Matsumoto also shows that θ_2 is not an isomorphism in general.

In this note we announce the proof of the following theorem, details of which will be published elsewhere. Unexplained notation and terminology is that of [Mi].

THEOREM A. Let R be a commutative local ring. The homomorphisms θ_n are isomorphisms, and consequently, $K_2(n, R) \approx K_2(R)$ for any $n \ge 3$.

In broad outline, the proof of Theorem A is similar to that of Matsumoto for fields [Mi, §12]. The maps θ_n are surjective as $K_2(n, R)$ is generated by the Steinberg symbols $\{u, v\}$, $u, v \in R^*$ [St2, Theorem 2.13]. To show that for $n \ge 3$ the θ_n are injective, the symbol $\{, \}$ with values in the group $A = K_2(3, R)$ is used to construct a central extension

(*)
$$1 \to A \to G_n \to E(n, R) \to 1.$$

Since St(n, R) is the universal central extension of E(n, R) for $n \ge 5$, (*) implies the existence of a surjective homomorphism St(n, R) $\rightarrow G_n$ which induces a surjection $K_2(n, R) \rightarrow A$ inverse to the surjection

$$K_2(3, R) \rightarrow K_2(n, R).$$

Thus Theorem A follows immediately from the construction of the central extensions (*).

AMS (MOS) subject classifications (1970). Primary 18F25, 20G35; Secondary 20G10. Key words and phrases. K_2 , local rings, radical ideal, stability theorems for K_2 , generators and relations for K_2 , Bruhat decomposition.

¹ Partially supported by NSF GP 25600.

² Partially supported by NSF GP 28915.

Copyright © American Mathematical Society 1974