GLOBAL BIFURCATION THEOREMS FOR NONCOMPACT OPERATORS

BY JOHN MACBAIN

Communicated by Michael Golomb, February 24, 1974

1. Introduction. The first general existence theorem for bifurcation points was obtained by Krasnoselski [1]. He considered the equation $u=\lambda Lu+H(\lambda, u)$ in a real Banach space \mathscr{B} where L and H are compact, and H is o(||u||) uniformly on each bounded λ interval for small u. In this situation he proved that if λ is a characteristic value of L having odd multiplicity, then $(\lambda, 0)$ is a bifurcation point in $R \times \mathscr{B}$. Much more recently, Rabinowitz [2] considered the same problem and, using a Leray-Schauder degree argument, obtained a two-fold alternative for the global behavior of these bifurcation branches.

This paper extends the results of Krasnoselski and Rabinowitz to a much larger class of operator equations. First to be considered is the equation

(1)
$$Lu = \lambda u + H(\lambda, u)$$

in a real Hilbert space \mathcal{H} , where H is as above and L is selfadjoint (bounded or unbounded). In this case, each isolated eigenvalue of L having odd multiplicity is a bifurcation point possessing a continuous branch. Moreover, an alternative theorem on the global behavior of these branches is obtained.

By use of similar arguments these results for selfadjoint operators are extended to a general class of linear operators in a real Banach space \mathcal{B} .

2. The selfadjoint operators. In this section all work is in a real Hilbert space \mathcal{H} , L is a selfadjoint operator taking \mathcal{H} into \mathcal{H} , and $H(\lambda, u)$ is a compact operator taking $R \times \mathcal{H}$ into \mathcal{H} that is o(||u||) uniformly on each bounded λ interval for small u.

Let \mathscr{C} denote $R \times \mathscr{H}$ with the product topology. For $\mathscr{V} \subset \mathscr{C}$, a subcontinuum of \mathscr{V} is a subset of \mathscr{V} which is closed and connected in \mathscr{C} . The trivial solutions of (1) are the points $(\lambda, 0)$, and all other solutions are called nontrivial. Let \mathscr{S} denote all nontrivial solutions of (1), and let \mathscr{C}_{λ_0} denote the maximal subcontinuum of $\mathscr{G} \cup (\lambda_0, 0)$ containing $(\lambda_0, 0)$.

AMS (MOS) subject classifications (1970). Primary 47H15, 46N05.

Key words and phrases. Nonlinear operator equations, bifurcation.

Copyright @ American Mathematical Society 1974