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1. Introduction. The first general existence theorem for bifurcation 
points was obtained by Krasnoselski [1]. He considered the equation 
u=XLu+H(X, u) in a real Banach space 38 where L and H are compact, 
and H is o(||w||) uniformly on each bounded X interval for small u. In 
this situation he proved that if X is a characteristic value of L having odd 
multiplicity, then (A, 0) is a bifurcation point in RY.38. Much more 
recently, Rabinowitz [2] considered the same problem and, using a Leray-
Schauder degree argument, obtained a two-fold alternative for the global 
behavior of these bifurcation branches. 

This paper extends the results of Krasnoselski and Rabinowitz to a 
much larger class of operator equations. First to be considered is the 
equation 

(1) Lu = Xu + H{X, u) 

in a real Hilbert space ^f, where H is as above and L is self adjoint 
(bounded or unbounded). In this case, each isolated eigenvalue of L 
having odd multiplicity is a bifurcation point possessing a continuous 
branch. Moreover, an alternative theorem on the global behavior of these 
branches is obtained. 

By use of similar arguments these results for selfadjoint operators are 
extended to a general class of linear operators in a real Banach space ^ . 

2. The selfadjoint operators. In this section all work is in a real 
Hilbert space Jf , L is a selfadjoint operator taking Jf7 into Jf?, and 
H(X, u) is a compact operator taking RxJt? into J^ that is o(||w||) uni
formly on each bounded X interval for small u. 

Let S denote Rx^ with the product topology. For i^^ê, a sub-
continuum of Y* is a subset of if which is closed and connected in S. 
The trivial solutions of (1) are the points (X, 0), and all other solutions are 
called nontrivial. Let $f denote all nontrivial solutions of (1), and let 
^XQ denote the maximal subcontinuum of ^U(A 0 , 0) containing (X0, 0). 
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