FINITE-DIMENSIONAL REPRESENTATIONS OF SEPARABLE C^{*}-ALGEBRAS

BY CARL PEARCY AND NORBERTO SALINAS

Communicated by P. R. Halmos, February 11, 1974

Let \mathscr{H} be a separable, infinite-dimensional, complex Hilbert space, and let $\mathscr{L}(\mathscr{H})$ denote the algebra of all bounded linear operators on \mathscr{H}. Furthermore, let \mathscr{K} denote the (norm-closed) ideal of all compact operators in $\mathscr{L}(\mathscr{H})$, and let $\pi: \mathscr{L}(\mathscr{H}) \rightarrow \mathscr{L}(\mathscr{H}) / \mathscr{K}$ denote the canonical quotient map of $\mathscr{L}(\mathscr{H})$ onto the Calkin algebra. If T is any operator in $\mathscr{L}(\mathscr{H})$, we shall denote by $\mathscr{C}^{*}(T)$ the C^{*}-algebra generated by T and $1_{\mathscr{H}}$. Moreover, the C^{*}-algebra $\pi\left(\mathscr{C}^{*}(T)\right)$, which is clearly the C^{*}-subalgebra of the Calkin algebra generated by $\pi(T)$ and 1 , will be denoted by $\mathscr{C}_{e}^{*}(T)$. If \mathscr{A} is any C^{*}-algebra, an n-dimensional representation of \mathscr{A} is, by definition, a *-algebra homomorphism φ of \mathscr{A} into the C^{*}-algebra \boldsymbol{M}_{n} of all $n \times n$ complex matrices such that $\varphi(1)=1$. Such a representation φ will be called irreducible if $\varphi(\mathscr{A})=\boldsymbol{M}_{n}$.

The first objective of this note is to announce the following theorem, which gives, via the standard decomposition theory, a characterization of all finite-dimensional representations of a separable C^{*}-algebra. See [2].

Theorem 1. Let \mathscr{A} be a separable C^{*}-subalgebra of $\mathscr{L}(\mathscr{H})$, and let φ be an irreducible n-dimensional representation of \mathscr{A}. Then, either
(a) $\mathscr{A} \cap \mathscr{K} \subset$ kernel φ (equivalently, there exists an n-dimensional representation $\tilde{\varphi}$ of the C^{*}-algebra $\pi(\mathscr{A})$ such that $\varphi(A)=\tilde{\varphi}(\pi(A))$ for every A in $\mathscr{A})$, in which case there exists a projection P in $\mathscr{L}(\mathscr{H})$ with infinite rank and nullity such that $\pi(P)$ commutes with the algebra $\pi(\mathscr{A})$, and there exists $a *$-algebra isomorphism ψ from the C^{*}-algebra $\pi(\mathscr{A}) \pi(P)(=\{\pi(A) \pi(P)$: $A \in \mathscr{A}\}$) onto M_{n} such that $\varphi(A)=\psi(\pi(A) \pi(P))$ for every A in \mathscr{A}, or
(b) $\mathscr{A} \cap \mathscr{K} \notin$ kernel φ, in which case there exist a projection Q in \mathscr{A} of finite rank that commutes with \mathscr{A} and $a *$-algebra isomorphism η from the C^{*}-algebra $\mathscr{A} Q(=\{A Q: A \in \mathscr{A}\})$ onto M_{n} such that $\varphi(A)=\eta(A Q)$ for every A in \mathscr{A}.

