REDUCTION THEORY IN ALGEBRAIC NUMBER FIELDS

BY HANS ZASSENHAUS

Communicated by Olga Taussky Todd, February 19, 1974
When is the half-group $\operatorname{GL}\left(n, Z^{\geqq 0}\right)$ of the unimodular matrices of degree n over the half-ring $\boldsymbol{Z}^{\geqq 0}$ of the nonnegative integers finitely generated ? ${ }^{1}$ Precisely if $n<3$.

Here the reduction of finite real extensions E of the rational number field is based on Theorem 1 stating the finiteness of the number of all matrices of degree n over $\boldsymbol{Z}^{\geqq 0}$ with a given irreducible characteristic polynomial over \boldsymbol{Z}, the rational integer ring, and on the following generalization of a well-known Frobenius theorem (Theorem 2): Let the semisimple commutative hypercomplex system A over \boldsymbol{R}, the real number field, contain a semiring H that is closed for the natural topology of A such that $A=H+(-H), H \cap-H=\{0\}$ (pointed cone semiring). Then there are finitely many \boldsymbol{R}-homomorphisms $\theta_{i}(1 \leqq i \leqq s)$ of A into the complex number field \boldsymbol{C} such that (1) $\bigcap_{i=1}^{s} \operatorname{ker} \theta_{i}=0$, (2) $\operatorname{ker} \theta_{i}+\operatorname{ker} \theta_{k}=$ $A(1 \leqq i<k \leqq s)$, (3) $A \theta_{i}=\boldsymbol{R}(1 \leqq i \leqq \rho ; 0<\rho \leqq s)$, ρ maximum, (4) for each ρ-tuple of nonnegative real numbers $\alpha_{1}, \cdots, \alpha_{\rho}$ there is an element h of H for which $h \theta_{i}=\alpha_{i}(1 \leqq i \leqq \rho)$, and (5) the set $C=\left\{\left(h \theta_{1}, \cdots, h \theta_{s}\right) \mid h \in\right.$ $\left.H \& 0 \leqq\left|h \theta_{\imath}\right| \leqq 1(1 \leqq i \leqq s)\right\}$ is a closed convex subset of $C^{1 \times s}$ containing 0 and closed under multiplication, and conversely. Note that $\left|\lambda_{i}\right| \leqq$ $\max _{1 \leqq j \leqq \rho}\left|\lambda_{j}\right|(1 \leqq i \leqq s)$ for $\left(\lambda_{1}, \cdots, \lambda_{s}\right)$ of C.

Theorem 1 is applied to a dedekind module M of E that is invariant under the E-order Λ. Any basis of M over Z leading to an irreducible integral representation Δ of Λ representing a given primitive element ω of E contained in Λ by an integral matrix Ω of degree n over $\boldsymbol{Z}^{\geqq 0}$ permits the repeated formation of certain $\alpha \beta$-successors (predecessors) defined as

$$
S_{\alpha \beta}^{\varepsilon}(\Omega)=T_{\alpha \beta}^{-\varepsilon} \Omega T_{\alpha \beta}^{\varepsilon}
$$

$\left(\alpha \neq \beta, 1 \leqq \alpha \leqq n, 1 \leqq \beta \leqq n, \varepsilon= \pm 1, S_{\alpha \beta}^{\ell}(\Omega) \in\left(Z^{\geqq 0}\right)^{n \times n}\right)$ defining an oriented finite graph $\Gamma(\Omega)$ with a finitely presented fundamental group generated

[^0]
[^0]: AMS (MOS) subject classifications (1970). Primary 12A45, 12A50.
 ${ }^{1}$ This question was raised recently by G. Pall; it started the present exploration of a semigroup theoretic generalization of Lagrange's reduction theory. We utilize the subsemigroup S_{n} of $\operatorname{GL}\left(n, Z^{\geqq 0}\right)$ which is generated by the permutation matrices and the transvection matrices $T_{\alpha \beta}=I_{n}^{+}\left(\delta_{i \alpha} \delta_{k \beta}\right)(\alpha \neq \beta, 1 \leqq \alpha \leqq n, 1 \leqq \beta \leqq n)$ which is proper precisely if $n \geqq 3$.

