QUADRATIC SPLINE INTERPOLATION ${ }^{1}$

BY M. J. MARSDEN
Communicated by R. C. Buck, February 20, 1974

Abstract

A quadratic spline interpolation theory is developed which, in general, produces better fits to continuous functions than does the existing cubic spline interpolation theory.

1. Let $\Delta: 0=x_{0}<x_{1}<\cdots<x_{n}=1$ be a partition of $[0,1]$. A function s is a spline of order m having knots in Δ if $s \in C^{m-2}[0,1]$ and, on each interval $\left(x_{i-1}, x_{i}\right), s(x)$ is represented by a polynomial of degree $m-1$ or less.

For the case $m=3$, we call s a quadratic spline. For quadratic splines, set $s_{i}=s\left(x_{i}\right), \lambda_{i}=s^{\prime}\left(x_{i}\right)$ for $i=0,1, \cdots, n$, and $h_{i}=x_{i}-x_{i-1}, s_{i-1 / 2}=$ $s\left(x_{i}-h_{i} / 2\right), a_{i}=h_{i+1} /\left(h_{i}+h_{i+1}\right), c_{i}=1-a_{i}$ for $i=1,2, \cdots, n$.

Any three of the parameters $s_{i-1}, s_{i-1 / 2}, s_{i}, \lambda_{i-1}, \lambda_{i}$ may be used to represent the quadratic spline s on the interval $\left(x_{i-1}, x_{i}\right)$. Because of continuity, these parameters must satisfy the consistency relations

$$
\begin{equation*}
a_{i} s_{i-1}+3 s_{i}+c_{i} s_{i+1}=4 a_{i} s_{i-1 / 2}+4 c_{i} s_{i+1 / 2} \tag{1.1}
\end{equation*}
$$

and

$$
\begin{equation*}
c_{i} \lambda_{i-1}+3 \lambda_{i}+a_{i} \lambda_{i+1}=8\left(s_{i+1 / 2}-s_{i-1 / 2}\right) /\left(h_{i}+h_{i+1}\right) \tag{1.2}
\end{equation*}
$$

for $i=1,2, \cdots, n-1$. For simplicity, we assume that s and s^{\prime} are periodic, i.e.

$$
\begin{equation*}
s_{0}=s_{n} \quad \text { and } \quad \lambda_{0}=\lambda_{n} \tag{1.3}
\end{equation*}
$$

so that (1.1) and (1.2) hold for $i=0$ and $i=n$ provided that the subscripts be read modulo n. For a given Δ, the periodic quadratic spline subspace has dimension n.
2. If y is a given continuous function satisfying

$$
\begin{equation*}
y(0)=y(1) \tag{2.1}
\end{equation*}
$$

the periodic quadratic spline interpolant $s=S_{3} y$ associated with y and Δ is

[^0]
[^0]: AMS (MOS) subject classifications (1970). Primary 41A10.
 ${ }^{1}$ Work supported by the National Research Council of Canada while at the University of Alberta.

