QUADRATIC SPLINE INTERPOLATION¹

BY M. J. MARSDEN

Communicated by R. C. Buck, February 20, 1974

ABSTRACT. A quadratic spline interpolation theory is developed which, in general, produces better fits to continuous functions than does the existing cubic spline interpolation theory.

1. Let $\Delta: 0 = x_0 < x_1 < \cdots < x_n = 1$ be a partition of [0, 1]. A function s is a spline of order m having knots in Δ if $s \in C^{m-2}[0, 1]$ and, on each interval (x_{i-1}, x_i) , s(x) is represented by a polynomial of degree m-1 or less.

For the case m=3, we call s a quadratic spline. For quadratic splines, set $s_i=s(x_i)$, $\lambda_i=s'(x_i)$ for $i=0, 1, \dots, n$, and $h_i=x_i-x_{i-1}$, $s_{i-1/2}=s(x_i-h_i/2)$, $a_i=h_{i+1}/(h_i+h_{i+1})$, $c_i=1-a_i$ for $i=1, 2, \dots, n$.

Any three of the parameters s_{i-1} , $s_{i-1/2}$, s_i , λ_{i-1} , λ_i may be used to represent the quadratic spline s on the interval (x_{i-1}, x_i) . Because of continuity, these parameters must satisfy the consistency relations

(1.1)
$$a_i s_{i-1} + 3s_i + c_i s_{i+1} = 4a_i s_{i-1/2} + 4c_i s_{i+1/2}$$

and

(1.2)
$$c_i \lambda_{i-1} + 3\lambda_i + a_i \lambda_{i+1} = 8(s_{i+1/2} - s_{i-1/2})/(h_i + h_{i+1})$$

for $i=1, 2, \dots, n-1$. For simplicity, we assume that s and s' are periodic, i.e.

(1.3)
$$s_0 = s_n \text{ and } \lambda_0 = \lambda_n$$

so that (1.1) and (1.2) hold for i=0 and i=n provided that the subscripts be read modulo n. For a given Δ , the periodic quadratic spline subspace has dimension n.

2. If y is a given continuous function satisfying

(2.1)
$$y(0) = y(1),$$

the periodic quadratic spline interpolant $s=S_3y$ associated with y and Δ is

AMS (MOS) subject classifications (1970). Primary 41A10.

¹ Work supported by the National Research Council of Canada while at the University of Alberta.

Copyright @ American Mathematical Society 1974