ADDITIVE COMMUTATORS BETWEEN 2×2 INTEGRAL MATRIX REPRESENTATIONS OF ORDERS IN IDENTICAL OR DIFFERENT QUADRATIC NUMBER FIELDS
 BY OLGA TAUSSKY ${ }^{1}$

Communicated March 18, 1974
The following theorem holds:
Theorem 1. Let A, B be two integral 2×2 matrices. Let the characteristic roots of A be α, α^{\prime} and let the characteristic roots of B be β, β^{\prime}, all assumed irrational. Then the determinant of

$$
\begin{equation*}
L=A B-B A \tag{*}
\end{equation*}
$$

is a negative norm in both $Q(\alpha), Q(\beta)$.
Remark. The proof of this theorem gives an algorithmic procedure for expressing an integer as a norm in a quadratic field.

Proof. There exists ${ }^{2}$ an integral matrix S with the property that $S^{-1} A S$ is the companion matrix

$$
\left(\begin{array}{cc}
0 & 1 \\
-\operatorname{det} A & \operatorname{tr} A
\end{array}\right)
$$

of A. Since the companion matrix has the characteristic vectors $(1, \alpha)^{\prime}$, (1, $\left.\alpha^{\prime}\right)^{\prime}$ the matrix $T=\left(\begin{array}{cc}1 & 1 \\ \alpha & \alpha^{\prime}\end{array}\right)$ has the property that $T^{-1} S^{-1} A S T=\binom{\alpha}{\alpha^{\prime}}$. Apply then the same similarity also to B and to L, i.e. to (*). Let the outcome of this be denoted by

$$
\left(\begin{array}{cc}
\alpha & \tag{**}\\
& \alpha^{\prime}
\end{array}\right) B^{(\alpha)}-B^{(\alpha)}\left(\begin{array}{cc}
\alpha & \\
& \alpha^{\prime}
\end{array}\right)=L^{(\alpha)}=\left(\begin{array}{cc}
0 & l_{2} \\
l_{3} & 0
\end{array}\right)
$$

then l_{2}, l_{3} are elements in $Q(\alpha)$.
Apply the similarity defined by T^{-1} to $L^{(\alpha)}$. The result must be rational. A straightforward computation using the fact that $\alpha, \alpha^{\prime}=-\frac{1}{2}(\operatorname{tr} A \pm \sqrt{ } m)$, with $m=\left(\operatorname{tr} A^{2}-4 \operatorname{det} A\right)$, shows that
$\left(\begin{array}{cc}1 & 1 \\ \alpha & \alpha^{\prime}\end{array}\right)\left(\begin{array}{cc}0 & l_{2} \\ l_{3} & 0\end{array}\right)\left(\begin{array}{cc}\alpha^{\prime} & -1 \\ -\alpha & 1\end{array}\right) \frac{1}{\alpha^{\prime}-\alpha}=-\frac{1}{\sqrt{ } m}\left(\begin{array}{cc}\alpha^{\prime} l_{3}-\alpha l_{2} & l_{2}-l_{3} \\ \alpha^{\prime 2} l_{3}-\alpha^{2} l_{2} & -\alpha^{\prime} l_{3}+\alpha l_{2}\end{array}\right)$.

[^0]
[^0]: AMS (MOS) subject classifications (1970). Primary 15A36, 12A50, 10C10.
 ${ }^{1}$ This work was carried out in part under an NSF contract.
 ${ }^{2}$ For further information in the number theoretic case on this see [1].

