ADDITIVE COMMUTATORS BETWEEN 2×2 INTEGRAL MATRIX REPRESENTATIONS OF ORDERS IN IDENTICAL OR DIFFERENT QUADRATIC NUMBER FIELDS

BY OLGA TAUSSKY¹

Communicated March 18, 1974

The following theorem holds:

THEOREM 1. Let A, B be two integral 2×2 matrices. Let the characteristic roots of A be α , α' and let the characteristic roots of B be β , β' , all assumed irrational. Then the determinant of

$$(*) L = AB - BA$$

is a negative norm in both $Q(\alpha)$, $Q(\beta)$.

REMARK. The proof of this theorem gives an algorithmic procedure for expressing an integer as a norm in a quadratic field.

PROOF. There exists² an integral matrix S with the property that $S^{-1}AS$ is the companion matrix

$$\begin{pmatrix} 0 & 1 \\ -\det A & \operatorname{tr} A \end{pmatrix}$$

of A. Since the companion matrix has the characteristic vectors $(1, \alpha)'$, $(1, \alpha')'$ the matrix $T = \begin{pmatrix} 1 & 1 \\ \alpha & \alpha' \end{pmatrix}$ has the property that $T^{-1}S^{-1}AST = \begin{pmatrix} \alpha & \alpha' \end{pmatrix}$. Apply then the same similarity also to B and to L, i.e. to (*). Let the outcome of this be denoted by

(**)
$$\binom{\alpha}{\alpha'}B^{(\alpha)}-B^{(\alpha)}\binom{\alpha}{\alpha'}=L^{(\alpha)}=\binom{0}{l_{3}}\binom{1}{l_{3}};$$

then l_2 , l_3 are elements in $Q(\alpha)$.

Apply the similarity defined by T^{-1} to $L^{(\alpha)}$. The result must be rational. A straightforward computation using the fact that α , $\alpha' = -\frac{1}{2}(\operatorname{tr} A \pm \sqrt{m})$, with $m = (\operatorname{tr} A^2 - 4 \operatorname{det} A)$, shows that

$$\binom{1}{\alpha} \begin{pmatrix} 1 & l \\ l_3 & 0 \end{pmatrix} \binom{\alpha' & -1}{-\alpha & 1} \frac{1}{\alpha' - \alpha} = -\frac{1}{\sqrt{m}} \binom{\alpha' l_3 - \alpha l_2}{\alpha'^2 l_3 - \alpha^2 l_2} \begin{pmatrix} l_2 - l_3 \\ -\alpha' l_3 + \alpha l_2 \end{pmatrix}.$$

AMS (MOS) subject classifications (1970). Primary 15A36, 12A50, 10C10.

Copyright @ American Mathematical Society 1974

¹ This work was carried out in part under an NSF contract.

² For further information in the number theoretic case on this see [1].