ENUMERATION OF PAIRS OF PERMUTATIONS AND SEQUENCES¹

BY L. CARLITZ, RICHARD SCOVILLE AND THERESA VAUGHAN

Communicated by Paul T. Bateman, January 10, 1974

Let $\pi = (a_1, \dots, a_n)$ denote a permutation of $Z_n = \{1, 2, \dots, n\}$. A rise of π is a pair a_i , a_{i+1} with $a_i < a_{i+1}$; a fall is a pair a_i , a_{i+1} with $a_i > a_{i+1}$. Thus if $\rho = (b_1, \dots, b_n)$ denotes another permutation of Z_n , the two pairs a_i , a_{i+1} ; b_i , b_{i+1} are either both rises, both falls, a rise and a fall or a fall and a rise. We denote these four possibilities by RR, FF, RF, FR, respectively.

Let $\omega(n)$ denote the number of pairs of permutations π , ρ with RR forbidden. More generally let $\omega(n, k)$ denote the number of pairs π , ρ with exactly k occurrences of RR.

THEOREM 1. We have

(1)
$$\sum_{n=0}^{\infty} \omega(n) \frac{z^n}{n! \, n!} = \left\{ \sum_{n=0}^{\infty} (-1)^n \frac{z^n}{n! \, n!} \right\}^{-1},$$

where $\omega(0) = \omega(1) = 1$.

THEOREM 2.

(2)
$$\sum_{n=0}^{\infty} \frac{z^n}{n! \, n!} \sum_{k=0}^{n-1} \omega(n, k) x^k = \frac{1-x}{f(z(1-x))-x},$$

where $f(z) = \sum_{n=0}^{\infty} (-1)^n (z^n/n!n!)$.

The pair π , ρ is said to be *amicable* if *RF* and *FR* are both forbidden. Let $\alpha(n)$ denote the number of amicable pairs of Z_n ; more generally let $\alpha(n, k)$ denote the number of pairs π , ρ with k total occurrences of *RF* and *FR*.

THEOREM 3. We have

$$(3) A(z)A(-z) = 1,$$

where $A(z) = \sum_{n=0}^{\infty} \alpha(n) z^n / n! n!$.

Key words and phrases. Permutations, sequences, generating functions.

¹ Supported in part by NSF grant GP-37924.

AMS (MOS) subject classifications (1970). Primary 05A15, 10A45.

Copyright © American Mathematical Society 1974