A PRODUCT FORMULA FOR AN ARF-KERVAIRE INVARIANT

BY EDGAR H. BROWN, JR. ${ }^{1}$

Communicated April 15, 1974
In [1] we introduced an Arf-Kervaire type of invariant $\sigma(M) \in Z_{8}=Z / 8 Z$ defined for closed compact, even-dimensional manifolds M having a certain kind of orientation (see below). In this announcement we give a product formula for σ. Our results are applicable to Poincaré duality spaces, but for simplicity we give them for smooth manifolds. A special case of our formula was given in [2].

Let v^{m} be the map

$$
v^{m}=\prod v_{i}: B O_{k} \rightarrow \prod_{2 i>m} K\left(Z_{2}, i\right)
$$

where $v_{i} \in H^{i}\left(B O_{k}\right)$ is the i th Wu class. Let $B O_{k}^{m}$ be the fibration over $B O_{k}$ induced by v^{m} from the contractible fibration. Let ζ_{k} be the universal k-plane bundle over $B O_{k}$, and let $\zeta_{k}^{m}=p^{*} \zeta_{k}$, where $p: B O_{k}^{m} \rightarrow B O_{k}$ is the projection. The Whitney sum map, $\zeta_{k} \times \zeta_{l} \rightarrow \zeta_{k+l}$, lifts to a map $\mu: \zeta_{k}^{m} \times$ $\zeta_{l}^{n} \rightarrow \zeta_{k+l}^{m+n}$.
If M is an m-manifold, a $W u$ orientation of M is a bundle map $V: v \rightarrow \zeta_{k}^{m}$, where ν is the normal bundle of $M \subset R^{m+k}$. (Every manifold has a Wu orientation.) If U and V are Wu orientations on M and $N, M \times N$ has a product orientation $U \times V$ defined in the obvious way. (For a detailed account of these ideas see [2].) Hereafter, manifold means a compact, closed, smooth manifold with a Wu orientation. $M \times N$ denotes the product manifold with the product orientation. The definition of σ given in [1] is applicable to M, with its Wu orientation, if $\operatorname{dim} M=2 n$. Let $\sigma(M)=0$ if $\operatorname{dim} M=2 n+1$. The definition of σ in [1] depended on a choice $\lambda_{n}: \pi_{2 n+k}\left(T\left(\zeta_{k}^{2 n}\right) \wedge K\left(Z_{2}, n\right)\right) \rightarrow Z_{4}$. Choose such λ_{n} 's for each n (such that $\lambda_{n}\left(\alpha_{n}\right)=2$ in the notation of [1]). ($\lambda_{2 n}$ can and should be chosen so that $\sigma(M)=\operatorname{index}(M) \bmod 8$ if M is an oriented (in the usual sense) $4 n$ manifold.) Since we killed v_{n+1} to form $B O_{k}^{n}, S^{n}$ has a nontrivial Wu orientation. Let \bar{S}^{n} denote S^{n} with this orientation. It turns out that

[^0]
[^0]: AMS (MOS) subject classifications (1970). Primary 57A25, 57D65.
 ${ }^{1}$ The author was supported by NSF grant GP-38920X and a Science Research Council of Britain Fellowship while carrying out this research.

