BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY Volume 80, Number 5, September 1974

ON SEQUENCES OF MEASURES

BY KLAUS BICHTELER

Received January 28, 1974

Dieudonné [2] has shown that a sequence (μ_n) of regular Borel measures on a compact space X converges weakly, i.e., on all bounded Borel functions, if only it converges on all open Baire sets. The result continues to hold if the μ_n are weakly compact linear maps from C(X) to a locally convex vector space F. Such maps have an integral extension to all bounded Borel functions ϕ , and $\int \phi \, d\mu_n$ converges provided $\int_O d\mu_n$ converges for all open sets O [4], [5]. The Vitali-Hahn-Saks theorem is the set-function analogue of these results.

In this note the analogue of these results for sequences (μ_n) of measures with values in an arbitrary topological vector space F will be proved. In order to deal with set functions and linear maps at the same time, we work in the setting of Daniell-Stone, and consider linear maps $\mu: \mathcal{R} \to F$, where \mathcal{R} is a vector lattice of real-valued functions on a set X closed under the Stone-operation $\phi \to \phi \wedge 1$, an "integration lattice" [1]. The examples we have in mind are (1) $\mathcal{R} = C^{00}(X)$, where X is locally compact, (2) $\mathcal{R} = \mathscr{E}(\mathscr{C})$, the step functions over a clan of sets on X, (3) $\mathcal{R} = c^{00}$, (4) $\mathcal{R} = l^{\infty}$. If an additive set function $\mu: \mathscr{C} \to F$ on the clan \mathscr{C} is given, we extend it by linearity to $\mathscr{E}(\mathscr{C})$ and are in the present situation.

We denote by \mathcal{O}_0^S the collection of sets in X whose indicator is majorized by a function in \mathscr{R} and is the supremum of a sequence in \mathscr{R}_+ . \mathcal{O}_0^S consists of the open dominated \mathscr{R} -Baire sets [1]. We shall assume that every function in \mathscr{R} is bounded and vanishes off some set in \mathcal{O}_0^S . Examples (1)-(4) have this property.

Then \mathscr{R} is the union of the normed spaces $\mathscr{R}[O] = \{\phi \in \mathscr{R} : \phi = 0 \text{ off } O\}$ under the supremum norm $\| \|_{\infty}$ and is given the inductive limit topology. X is given the initial uniformity and topology for the functions $\phi: X \rightarrow \overline{R}$ ($\phi \in \mathscr{R}$), under which it is precompact. Its completion \tilde{X} can be identified with the set of all Riesz-space characters $t: \mathscr{R} \rightarrow R$ having $t(\phi \wedge 1) = t(\phi) \wedge 1$. Subtracting from \tilde{X} the zero character, one obtains the locally compact *spectrum* \hat{X} of \mathscr{R} . X is dense in \hat{X} , and the extensions $\hat{\phi}$ of $\phi \in \mathscr{R}$ to \hat{X} , the Gelfand transforms, are dense in $C^{00}(\hat{X})$. For the details see [1].

AMS (MOS) subject classifications (1970). Primary 46G10.

Copyright @ American Mathematical Society 1974