LEBESGUE SPACES FOR BILINEAR VECTOR INTEGRATION THEORY

BY JAMES K. BROOKS¹ AND NICOLAE DINCULEANU²

Communicated by Robert Bartle, December 12, 1973

In this note we shall announce results concerning the structure of $L_E^1(m)$, the space of E-valued functions integrable with respect to a measure $m: \Sigma \rightarrow L(E, F)$, where L(E, F) is the class of bounded operators from the Banach space E into the Banach space F. The bilinear integration theory introduced here is more restrictive than the one developed by Bartle [1], but it is general enough to allow a norm to be defined on the integrable functions and to permit the study of weak compactness and convergence theorems; moreover, $L_E^1(m)$ lends itself in a natural way to the study of continuous operators $T: C_E(S) \rightarrow F$, where the domain is the space of continuous E-valued functions defined on the compact Hausdorff space S as follows: By Dinculeanu's representation theorem [6], there exists a unique regular finitely-additive measure $m: \Sigma \rightarrow L(E, F^{**})$, where Σ is the family of Borel subsets of S, such that $T(f) = \int f dm$. If T is a weakly compact operator, Brooks and Lewis [2] have shown that m is countably additive, with range in L(E, F). In addition, the set $N = \{|m_z| : z \in F_1^*\}$ is relatively weakly compact in $ca(\Sigma)$ —here m_z is the E*-valued measure defined by $m_z(A)e = \langle m(A)e, z \rangle$, and $|m_z|$ is the total variation function of m_z . Conversely, if N has the above property and E is reflexive, then T is weakly compact. A natural question is whether a Lebesgue space $L_E^1(m) \supset C_E(S)$ of *m*-integrable functions can be defined. If so, what convergence theorems can be proved, and how are the weakly compact sets characterized?

The setting is as follows. Let Σ be a σ -algebra of subsets of a set T, and $m: \Sigma \rightarrow L(E, F)$, a countably additive measure be given such that mis strongly bounded, that is, $\tilde{m}_{E,F}(A_i) \rightarrow 0$, whenever (A_i) is a disjoint sequence of sets $(\tilde{m}_{E,F})$ is the semivariation of m with respect to E and F [6]). It follows that $N = \{|m_z| : z \in F_1^*\}$ is relatively weakly compact in $ca(\Sigma)$. Let λ be a positive control measure for m such that $\lambda \leq \tilde{m}_{E,F}$ and

AMS (MOS) subject classifications (1970). Primary 46E30, 28A45.

¹ Supported in part by NSF Grant GP 28617.

² Supported in part by NSF Grant GP 31821X.