BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY Volume 80, Number 4, July 1974

ON THE EXTENSION OF BASIC SEQUENCES TO BASES

BY IVAN SINGER

Communicated by Robert Bartle, December 12, 1973

ABSTRACT We show that there exists a subspace G with a basis of some Banach space E with a basis, such that no basis of G can be extended to a basis of E.

A sequence $\{x_n\}$ in a (real or complex, infinite dimensional) Banach space E is called (a) a *basis* of E, if for every $x \in E$ there is a unique sequence of scalars $\{\alpha_n\}$ such that $x = \sum_{i=1}^{\infty} \alpha_i x_i$; (b) a *basic sequence* if $\{x_n\}$ is a basis of its closed linear span $[x_n]$ in E. The following problem was raised by A. Pełczynski (see [5] or [7, p. 27, Problem 4.1]): Let $\{y_n\}$ be a basic sequence in a Banach space E with a basis. Does there exist a basis $\{x_n\}$ of E with the property that for each n there is an index i_n such that $x_i = y_n$? Or, in other words, can $\{y_n\}$ be extended to a basis of E?

A. Pełczyński and H. P. Rosenthal have communicated to us that recently they have solved this problem in the negative, for $E=L^p([0, 1])$ (2 $and <math>E=L^1([0, 1])$ [6]. However, since in their counterexamples $\{y_n\}$ had some permutation $\{y_{\sigma(n)}\}$ which can be extended to a basis of E, they have raised the problem whether there exists a basic sequence $\{y_n\}$ in some Banach space E with a basis, such that no permutation $\{y_{\sigma(n)}\}$ of $\{y_n\}$ can be extended to a basis of E. In the present note we shall show even more, namely, that there exists a subspace G with a basis of some Banach space Ewith a basis, such that no basis of G can be extended to a basis of E. Our proof is very short, but uses deep results of Enflo [1], Lindenstrauss [4] and Johnson-Rosenthal-Zippin [3].

EXAMPLE. Let F be a separable Banach space which has no basis [1]. By [4] there exists a separable Banach space B such that the conjugate space B^* has a shrinking basis and that $B^{**}/\pi(B)$ is isomorphic to F, where π is the canonical embedding of B into B^{**} . Then B^{**} has a basis (see e.g. [7, Theorem 4.2, p. 272]) and by [3, Theorem 1.4(a)], B has a shrinking basis, so $\pi(B)$ has a shrinking basis. However, no basis $\{y_n\}$ of $G=\pi(B)$ can be extended to a basis $\{y_n\} \cup \{y'_n\}$ of $E=B^{**}$, since otherwise the quotient space $E/G=B^{**}/\pi(B)$ would have a basis, namely $\{\omega(y'_n)\}$,

AMS (MOS) subject classifications (1970). Primary 46B15; Secondary 46A35.

Copyright @ American Mathematical Society 1974