ON THE EXTENSION OF BASIC SEQUENCES TO BASES

BY IVAN SINGER
Communicated by Robert Bartle, December 12, 1973

> Abstract We show that there exists a subspace G with a basis of some Banach space E with a basis, such that no basis of G can be extended to a basis of E.

A sequence $\left\{x_{n}\right\}$ in a (real or complex, infinite dimensional) Banach space E is called (a) a basis of E, if for every $x \in E$ there is a unique sequence of scalars $\left\{\alpha_{n}\right\}$ such that $x=\sum_{i=1}^{\infty} \alpha_{i} x_{i}$; (b) a basic sequence if $\left\{x_{n}\right\}$ is a basis of its closed linear span [x_{n}] in E. The following problem was raised by A. Pełczynski (see [5] or [7, p. 27, Problem 4.1]): Let $\left\{y_{n}\right\}$ be a basic sequence in a Banach space E with a basis. Does there exist a basis $\left\{x_{n}\right\}$ of E with the property that for each n there is an index i_{n} such that $x_{i_{n}}=y_{n}$? Or, in other words, can $\left\{y_{n}\right\}$ be extended to a basis of E ?
A. Pełczyñski and H. P. Rosenthal have communicated to us that recently they have solved this problem in the negative, for $E=L^{p}([0,1])(2<p<\infty)$ and $E=L^{1}([0,1])$ [6]. However, since in their counterexamples $\left\{y_{n}\right\}$ had some permutation $\left\{y_{\sigma(n)}\right\}$ which can be extended to a basis of E, they have raised the problem whether there exists a basic sequence $\left\{y_{n}\right\}$ in some Banach space E with a basis, such that no permutation $\left\{y_{\sigma(n)}\right\}$ of $\left\{y_{n}\right\}$ can be extended to a basis of E. In the present note we shall show even more, namely, that there exists a subspace G with a basis of some Banach space E with a basis, such that no basis of G can be extended to a basis of E. Our proof is very short, but uses deep results of Enflo [1], Lindenstrauss [4] and Johnson-Rosenthal-Zippin [3].

Example. Let F be a separable Banach space which has no basis [1]. By [4] there exists a separable Banach space B such that the conjugate space B^{*} has a shrinking basis and that $B^{* *} / \pi(B)$ is isomorphic to F, where π is the canonical embedding of B into $B^{* *}$. Then $B^{* *}$ has a basis (see e.g. [7, Theorem 4.2, p. 272]) and by [3, Theorem 1.4(a)], B has a shrinking basis, so $\pi(B)$ has a shrinking basis. However, no basis $\left\{y_{n}\right\}$ of $G=\pi(B)$ can be extended to a basis $\left\{y_{n}\right\} \cup\left\{y_{n}^{\prime}\right\}$ of $E=B^{* *}$, since otherwise the quotient space $E / G=B^{* *} / \pi(B)$ would have a basis, namely $\left\{\omega\left(y_{n}^{\prime}\right)\right\}$,

