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ABSTRACT We show that there exists a subspace G with a basis 
of some Banach space E with a basis, such that no basis of G can be 
extended to a basis of E. 

A sequence {xn} in a (real or complex, infinite dimensional) Banach 
space E is called (a) a basis of E, if for every x e E there is a unique 
sequence of scalars {ocw} such that x=2£=i a**<î 03) a ^ûiW'c sequence if 
{xw} is a basis of its closed linear span [xn] in E. The following problem 
was raised by A. Pelczynski (see [5] or [7, p. 27, Problem 4.1]): Let {yn} 
be a basic sequence in a Banach space E with a basis. Does there exist a 
basis {xw} of £ with the property that for each n there is an index in such 
that xin=yn7 Or, in other words, can {yn} be extended to a basis of El 

A. Pelczynski and H. P. Rosenthal have communicated to us that recently 
they have solved this problem in the negative, for E=Lp([091]) (2<p< oo) 
and J?=L1([0, 1]) [6]. However, since in their counterexamples {yn} had 
some permutation {ƒ*<„)} which can be extended to a basis of E, they have 
raised the problem whether there exists a basic sequence {yn} in some 
Banach space E with a basis, such that no permutation {ya{n)} of {yn} can 
be extended to a basis of E. In the present note we shall show even more, 
namely, that there exists a subspace G with a basis of some Banach space E 
with a basis, such that no basis o f G can be extended to a basis of E. Our 
proof is very short, but uses deep results of Enflo [1], Lindenstrauss [4] 
and Johnson-Rosenthal-Zippin [3]. 

EXAMPLE. Let F be a separable Banach space which has no basis [1], 
By [4] there exists a separable Banach space B such that the conjugate 
space B* has a shrinking basis and that i?**/7r(i?) is isomorphic to F, 
where TT is the canonical embedding of B into 2?**. Then B** has a basis 
(see e.g. [7, Theorem 4.2, p. 272]) and by [3, Theorem 1.4(a)], B has a 
shrinking basis, so TT(B) has a shrinking basis. However, no basis {yn} of 
G=TT(5) can be extended to a basis {yn} U{;4} of E=B**, since otherwise 
the quotient space EIG=B**ITT(B) would have a basis, namely {o)(yf

n)}, 
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