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Let ^bea 1-chain on a Riemann surface R and TX(R) a closed subspace 
of Th(R)9 the Hilbert space of square integrable harmonic differential forms 
on R9 then there is a unique y)xÇc)eTx(R) such that $4,co=(co9 y)œ(*)) 
for all co G TX(R). \px(c) is called the ^(^-reproducing differential for 
c and HvkWII2 is a conformai invariant. For the case of a 1-cycle c an 
extremal length interpretation for the squared norm of the reproducing 
differential was given by Accola [1] and Blatter [2] for Th(R)9 by Marden 
[3] for Th0(R) and by Rodin [5] for Th86(R). In each of these results the 
curve family whose extremal length gave the square of the norm of the 
reproducing differential was a homology class associated with c. Rodin 
[5] asked whether there were similar theorems for other subspaces of 
Th(R) and what the proper curve family would be in case c was an arbi
trary 1-chain, not necessarily a 1-cycle. If c is a single arc, then a reduced 
extremal distance interpretation of the norm of the reproducing differential 
for The(R), Thm(R) and Th6(R)nTl6(R) was given in [4]. The purpose of 
this paper is to announce solutions to the problems posed by Rodin for 
a large number of important subspaces of Th(R); a complete, detailed 
paper is forthcoming. 

For the sake of simplicity we shall consider only compact Riemann 
surfaces; this case gives rise to one of the most important applications. 
Let ^be a 1-chain on the compact Riemann surface R. Suppose that 
9^=2^=i^A"~2i=i miai> where the points ai9 b} are all distinct and 
mi9 ni are positive integers, unless 9^=0. Define ^-=^(c)—{d\d is 
a 1-chain on R and dd—dc} and J f = ^ ( ^ ) = { ^ : de^ and c—d 
is homologous to 0}. Consider fixed local coordinates wi9 zi defined 
in a neighborhood of ai9 bj respectively. Given vectors r=(r l 5 • • • , rz) and 
s=(sl9 - • • ,Sj) of positive numbers, let R(r, s) be the bordered Riemann 
surface obtained by removing from R disks of radius ri9 ss about ai9 bj9 
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