EXTREMAL LENGTH, REPRODUCING DIFFERENTIALS AND ABEL'S THEOREM

BY CARL DAVID MINDA¹

Communicated by F. W. Gehring, October 22, 1973

Let c be a 1-chain on a Riemann surface R and $\Gamma_{\alpha}(R)$ a closed subspace of $\Gamma_h(R)$, the Hilbert space of square integrable harmonic differential forms on R, then there is a unique $\psi_x(c) \in \overline{\Gamma}_x(R)$ such that $\int_c \omega = (\omega, \psi_x(c))$ for all $\omega \in \Gamma_x(R)$. $\psi_x(c)$ is called the $\Gamma_x(R)$ -reproducing differential for c and $\|\psi_x(c)\|^2$ is a conformal invariant. For the case of a 1-cycle c an extremal length interpretation for the squared norm of the reproducing differential was given by Accola [1] and Blatter [2] for $\Gamma_h(R)$, by Marden [3] for $\Gamma_{ho}(R)$ and by Rodin [5] for $\Gamma_{hse}(R)$. In each of these results the curve family whose extremal length gave the square of the norm of the reproducing differential was a homology class associated with c. Rodin [5] asked whether there were similar theorems for other subspaces of $\Gamma_{h}(R)$ and what the proper curve family would be in case c was an arbitrary 1-chain, not necessarily a 1-cycle. If c is a single arc, then a reduced extremal distance interpretation of the norm of the reproducing differential for $\Gamma_{he}(R)$, $\Gamma_{hm}(R)$ and $\Gamma_{he}(R) \cap \Gamma^*_{hse}(R)$ was given in [4]. The purpose of this paper is to announce solutions to the problems posed by Rodin for a large number of important subspaces of $\Gamma_h(R)$; a complete, detailed paper is forthcoming.

For the sake of simplicity we shall consider only compact Riemann surfaces; this case gives rise to one of the most important applications. Let c be a 1-chain on the compact Riemann surface R. Suppose that $\partial c = \sum_{j=1}^{J} n_j b_j - \sum_{i=1}^{I} m_i a_i$, where the points a_i , b_j are all distinct and m_i , n_j are positive integers, unless $\partial c=0$. Define $\mathcal{F}=\mathcal{F}(c)=\{d:d:d$ is a 1-chain on R and $\partial d = \partial c\}$ and $\mathcal{H}=\mathcal{H}(c)=\{d:d\in\mathcal{F} \text{ and } c-d$ is homologous to 0}. Consider fixed local coordinates w_i , z_j defined in a neighborhood of a_i , b_j respectively. Given vectors $\mathbf{r}=(r_1, \cdots, r_I)$ and $\mathbf{s}=(s_1, \cdots, s_J)$ of positive numbers, let $R(\mathbf{r}, \mathbf{s})$ be the bordered Riemann surface obtained by removing from R disks of radius r_i , s_j about a_i , b_j ,

Copyright © American Mathematical Society 1974

AMS (MOS) subject classifications (1970). Primary 30A52, 31A15.

¹ Research supported in part by National Science Foundation Grant GP-39051.