SETS OF COLORINGS OF CIRCUITS

BY JAMES W. SCHLESINGER
Communicated by Gian-Carlo Rota, November 6, 1973

1. Introduction. A circuit Γ is a triangulation of the one-dimensional sphere S^{1}. It shall have as its set of vertices $\Gamma_{0}=Z_{k}=\{0,1, \cdots, k-1\}$, and as its set of one-simplices $\Gamma_{1}=\left\{\sigma_{j}=(j-1, j) \mid j=1,2, \cdots, k\right\}$. A coloring of Γ is a zero-dimensional cochain $c^{0} \in C^{0}\left(\Gamma, Z_{2} \oplus Z_{2}\right)$ whose coboundary is "nowhere zero", i.e. $\delta c^{0}\left(\sigma_{j}\right) \neq 0$ for all $\sigma_{j} \in \Gamma_{1}$. A set K of colorings of Γ is realizable as a set of admissible colorings if there is a triangulated two-dimensional disk D with boundary Γ such that the restriction homomorphism

$$
j^{\#}: C^{0}\left(D, Z_{2} \oplus Z_{2}\right) \rightarrow C^{0}\left(\Gamma, Z_{2} \oplus Z_{2}\right)
$$

(induced by the inclusion $j: \Gamma \rightarrow D$) takes the colorings of D onto K.
Let $\psi(k)$ be the minimum cardinality of a set K which is realizable as a set of admissible colorings.

Remark 1. $\quad \psi(k)=0$ if and only if the four color conjecture is false.
The conjecture of Albertson and Wilf $[1] . \quad \psi(k)=3 \cdot 2^{k}$ for $k=3,4, \cdots$.
Comment 1. Since $3 \cdot 2^{k}$ is the number of colorings of any disk D with no interior vertices and k vertices in $\Gamma_{0}=D_{0}$, we conclude 3• $2^{k} \geqq \psi(k)$.

Comment 2. It is not known whether the four color conjecture implies the Albertson-Wilf conjecture for $k>6$. (It does for $k=3,4,5$ and 6 [1].)

In [1], Albertson and Wilf announce:
Theorem 1. If the four color conjecture holds then

$$
\psi(k) \geqq(4!) F_{k-1} \geqq C((1+\sqrt{ } 5) / 2)^{k}
$$

where F_{k} is the kth Fibonacci number.
By generalizing the notion of a set of admissible colorings of Γ to the notion of a complete set of colorings of Γ, one can prove by induction on k :

Theorem 2. If the four color conjecture holds then

$$
\begin{aligned}
\psi(k) & >4 \cdot 3^{k / 2} & & \text { if } k \text { is even } \\
& >8 \cdot 3^{(k-1) / 2} & & \text { if } k \text { is odd. }
\end{aligned}
$$

Key words and phrases. Four color problem, set of all colorings.

