BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY Volume 80, Number 4, July 1974

AUTOMORPHIC MAPPINGS IN Rⁿ

BY O. MARTIO AND U. SREBRO

Communicated by F. W. Gehring, December 12, 1973

1. By an automorphic mapping in \mathbb{R}^n we mean a continuous, open, discrete, and sense-preserving mapping f from a domain D in \mathbb{R}^n into $\overline{\mathbb{R}^n} = \mathbb{R}^n \cup \{\infty\}$ which satisfies $f \circ g = f$ for all $g \in G$ for some discrete group G of *n*-dimensional Möbius transformations, $n \ge 2$. The results presented here indicate differences (see §5) as well as similarities (see §4) between automorphic functions in C and automorphic mappings of bounded dilatation in \mathbb{R}^n , n > 2. By mappings of bounded dilatation we mean quasimeromorphic (qm) mappings (cf. [MRV 1-2]).

2. Let G be a discrete Möbius group acting on the unit ball B^n . For $x_0 \in B^n$ which is not fixed by any element of $G \setminus \{id\}$ the set $P = \{x \in B^n : d(x, x_0) < d(x, g(x_0)), \forall g \in G \setminus \{id\}\}$ is a normal fundamental polyhedron; d denotes the hyperbolic distance. If the hyperbolic measure $V(B^n/G)$ of B^n/G is finite, then every normal fundamental polyhedron P has a finite number of (n-1)-faces and a finite number of boundary vertices $\{p_1, \dots, p_k\} = \overline{P} \cap \partial B^n$ [S]. The last set is void when B^n/G is compact. P is said to be simple if for every boundary vertex $p \in \overline{P} \cap \partial B^n$ all the (n-1)-faces of P which meet at p are pairwise G-equivalent. By a recent result of Leon Greenberg (unpublished) it can be shown [MS] that if $V(B^n/G) < \infty$, then every point $b \in \partial B^n$ which is fixed by a parabolic element $g \in G$ is a boundary vertex of some simple fundamental polyhedron. A Möbius transformation is called parabolic if it has a unique fixed point in \overline{R}^n .

Complete proofs of the following theorems and related results will appear in [MS].

3. The existence of automorphic meromorphic functions for Möbius groups in C is usually proved by methods which cannot be used in \mathbb{R}^n , n>2. However, with a suitable modification of a construction by J. W. Alexander [A] we obtain

THEOREM 1. Every discrete Möbius group acting on B^n with $V(B^n/G) < \infty$ has qm automorphic mappings.

Copyright © American Mathematical Society 1974

AMS (MOS) subject classifications (1970). Primary 30A60; Secondary 30A68, 57A99, 31B15.