# A LOWER ESTIMATE FOR EXPONENTIAL SUMS 

BY C. A. BERENSTEIN ${ }^{1}$ AND M. A. DOSTAL

Communicated by François Treves, October 8, 1973

1. Introduction. In this note we present two theorems on exponential sums (see Theorems 1 and 2 below). Although seemingly unrelated, both results are motivated by the study of a certain type of lower estimates of exponential sums in the complex domain. Thus while Theorem 2 is related to the validity of this estimate for all discrete exponential sums ${ }^{2}$, Theorem 1 essentially says that even a milder estimate of this kind does not hold for a whole class of continuous exponential sums (i.e. for certain Fourier transforms).

In addition to the usual notation of the theory of distributions (cf. [2], [3], [7]), the following symbols will be used throughout this note. Given a distribution $\Phi \in \mathscr{E}^{\prime}=\mathscr{E}^{\prime}\left(\boldsymbol{R}^{n}\right)$, the symbol [ $\Phi$ ] ( $\{\Phi\}$ resp.) denotes the convex hull of the support of $\Phi$ (singular support of $\Phi$, resp.). For $A \subset \boldsymbol{R}^{n}, h_{A}$ is the supporting function of $A$, i.e. $h_{A}(\lambda)=\sup _{x \in A}\langle x, \lambda\rangle$, $\lambda \in \boldsymbol{R}^{n}$. For $\zeta \in \boldsymbol{C}^{n}$ and $r>0, \Delta=\Delta(\zeta ; r)$ is the closed polydisk with center $\zeta$ and radius $r$; and, if $g\left(\zeta^{\prime}\right)$ is any continuous function on $\Delta(\zeta ; r)$, we shall write

$$
\begin{equation*}
|g(\zeta)|_{r}=\max _{\zeta^{\prime} \in \Delta}\left|g\left(\zeta^{\prime}\right)\right| . \tag{1}
\end{equation*}
$$

## 2. Indicators of smooth convex bodies.

Definition. Let $\Phi \in \mathscr{E}^{\prime}$ be such that

$$
\begin{equation*}
\{\Phi * \Psi\}=\{\Phi\}+\left\{\Psi^{\prime}\right\} \quad\left(\forall \Psi \in \mathscr{E}^{\prime}\right) \tag{2}
\end{equation*}
$$

Then $\Phi$ will be called a good convolutor.
The relationship of being a good convolutor to the solvability of the convolution equation $\Phi * u=f$ in the appropriate distribution spaces was discovered by L. Hörmander [7], and since then it was discussed by several authors (for references, cf. [2, Chapter I]). However, it is usually not easy to decide whether a given distribution $\Phi$ is a good convolutor or not.

[^0]
[^0]:    AMS (MOS) subject classifications (1970). Primary 33A10, 32A15, 47G05.
    Key words and phrases. Exponential-polynomials, Fourier transforms, several complex variables, convolution equations.
    ${ }^{1}$ The first author was supported in part by the U.S. Army Research Office (Durham)
    ${ }^{2}$ And more generally, for all exponential polynomials.

