HOMOLOGY AND IMAGES OF SEMIANALYTIC SETS

BY ROBERT M. HARDT¹

Communicated by William Browder, January 3, 1974

ABSTRACT. The homology of semianalytic sets may be treated using chains which are themselves locally-finite integral combinations of disjoint, oriented semianalytic submanifolds. The analytic image of a relatively compact semianalytic set, though not necessarily semianalytic, admits a finite stratification into connected analytic submanifolds of various dimensions.

A subset A of a (real) analytic manifold M is called analytic (respectively, semianalytic) if M can be covered by open sets U for which there is a real-valued function f (respectively, a finite family \mathscr{F} of real-valued functions) analytic in U so that $U \cap A$ equals $f^{-1}\{0\}$ (respectively, $U \cap A$ is a union of connected components of $f^{-1}\{0\} \sim g^{-1}\{0\}$ for some $f, g \in \mathscr{F}$). A stratum in M is a connected (properly embedded) differentiable submanifold of M. A stratification $\mathscr S$ of a subset A of M is a locally finite partition of A into strata $\mathscr S$ so that $(A \cap Clos\ S) \sim S$ is a union of strata in $\mathscr S$ having dimension less than the dimension of S. It is well known $[9, \S 13], [7, 2.8]$ that every semianalytic set admits a stratification into semianalytic strata.

A j-dimensional analytic chain T in M is a sum of integral multiples of oriented j-dimensional semianalytic strata belonging to some fixed stratification of M. Since the restriction to these strata of j-dimensional Hausdorff measure is locally-finite by [2, 3.4.8(13)], the analytic chain T is (by oriented integration, counting multiplicities, of differential j forms of compact support in M) a j-dimensional current in M. The set spt T, being the union of the closures of the strata occurring with nonzero multiplicity, is semianalytic. For $j \ge 1$, the (j-1)-dimensional current ∂T , defined by $\partial T(\psi) = T(d\psi)$ for $\psi \in \mathcal{D}^{j-1}(M)$, is, by [2, 4.2.28], also an analytic chain in M.

Suppose $M \supset A \supset B$. Using the group of real analytic cycles $\mathcal{Z}_{j}(A, B) = \{T: T \text{ is a } j\text{-dimensional analytic chain of compact support, spt } T \subseteq A$,

AMS (MOS) subject classifications (1970). Primary 32C05, 32C25; Secondary 55B35, 55B45, 28A75.

Key words and phrases. Semianalytic set, stratum, stratification, analytic chain, current, real analytic homology group, semianalytic shadow.

¹ Research partially supported by NSF Grant GP29321.