ON VITALI-HAHN-SAKS TYPE THEOREMS

BY BARBARA FAIRES¹

Communicated by Robert Bartle, November 7, 1973

In recent years extensive work has been done on the Vitali-Hahn-Saks theorem and its relatives. Seever [13] considered the question of extending the Vitali-Hahn-Saks theorem to the case where the domain is a Boolean algebra which is not necessarily sigma complete. Brooks and Jewett [2] established results for a strongly bounded map defined on a Boolean sigma algebra of sets with values in a Banach space. Further generalizations to group-valued set functions have been studied by the Poznán school (see [5], [6], [7], [8], [9], [11], [12]). The work of all these authors is generalized herein to the case of strongly bounded maps defined on Boolean algebras with the Seever property and taking values in a Banach space. Some applications other than those considered herein and the final generalization to the group-valued case can be found in [10].

I wish to thank Professor J. Diestel for his advice and encouragement in the preparation of this paper. Also, I wish to express my gratitude to Professors R. E. Huff and J. J. Uhl, Jr. for many helpful discussions.

1. Notation and definitions. A Boolean algebra \mathscr{B} has the property (I) if and only if for any sequences $\{x_n\}$ and $\{y_n\}$ in \mathscr{B} satisfying $x_n \leq y_m$ for all n, m, there exists $x \in \mathscr{B}$ such that $x_n \leq x \leq y_n$ for all n. This condition is equivalent to the condition: given any sequences $\{a_n\}$ and $\{b_n\}$ in \mathscr{B} satisfying $a_n \wedge a_m = 0$, $b_n \wedge b_m = 0$ for $n \neq m$ and $a_n \wedge b_m = 0$ for all n, m, there exists an element a in \mathscr{B} such that $a \geq a_n$ and $b_n \wedge a = 0$ for all n.

Unless signified otherwise, \mathscr{B} will be used in this paper to denote a Boolean algebra with the property (I). The symbol X denotes a Banach space and X^* its Banach space dual.

A finitely additive $\mu: \mathscr{B} \to X$ is bounded whenever there exists M > 0such that $\|\mu(b)\| \leq M$ for all $b \in \mathscr{B}$; μ is said to be strongly bounded if $\|\mu(e_n)\| \to 0$ as $n \to \infty$ for each disjoint sequence e_1, \dots, e_n, \dots of elements in \mathscr{B} . A sequence $\mu_n: \mathscr{B} \to X$, $n=1, 2, \dots$, is uniformly strongly bounded if for each disjoint sequence $\{e_n\} \subset \mathscr{B}$, $\lim_n \sup_k \|\mu_k(e_n)\| = 0$. By grouping it is easy to see that if μ is strongly bounded and $\{e_n\} \subset \mathscr{B}$ is disjoint, then $\sum_{n=1}^{\infty} \mu(e_n)$ is an unconditionally convergent series in X. A map $\mu: \mathscr{B} \to X$ is

AMS (MOS) subject classifications (1970). Primary 46G99; Secondary 28A60.

¹ Supported in part by a Doctoral Fellowship granted by Kent State University.

Copyright @ American Mathematical Society 1974