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THEOREM 1. Let Dx, D2^Cn be strictly pseudoconvex domains with 
smooth boundaries and suppose that F\D1-^D2 is biholomorphic (i.e., F 
is an analytic homeomorphism). Then F extends to a diffeomorphism of 
the closures, F: D1->D2. 

The main idea in proving Theorem 1 is to study the boundary behavior 
of geodesies in the Bergman metrics (see [2]) of Z>i and D2. To do so, 
we use a rather explicit formula for the Bergman kernels of Dx and D2. 
We begin with a few definitions. Let D={z e Cn |^(z)>0} be a strictly 
pseudoconvex domain, where ip e C^iC") satisfies grad ^ ^ O o n dD. 

(1) Let JSf (co) denote the Levi form, i.e. the quadratic form 

jSf (co) dzdz = ^ V Y 

i.k dzi otic 

dZj dzk 

restricted to the subspace {dz e Cn\2ô (d\pfdz^)\w dzj=0} of Cn. 
(2) For coi, œ2 e D, set p(a)x, co2) = |co1—co2|

2+|(co2—co^ • (dipldco)\œi\. 
(See [2] again.) 

(3) A smooth function y defined on D X D has weight k (where k^.0 is 
an integer or half-integer) if the following estimate holds. 

l9>(«>i, (o2)\ ^ C(y>(tt>i) + f(co2) + P(co1, co2))
k 

(4) Set 

dtp 
X(z, œ) = y>(œ) + 2 a 

2 4*dœ4dœh 

(zi - co,.) 

(Zj - (Oi)(zk - Û>*). 
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