MANIFOLDS WITH THE FIXED POINT PROPERTY. I

BY S. Y. HUSSEINI¹

Communicated by Mary Ellen Rudin, November 6, 1973

1. Introduction. Suppose that $f: M \to M$ is a map of the simply connected closed (smooth or PL) manifold M which preserves a given geometric structure. We shall consider the question of when f has a fixed point. (The geometric structure is described by an element ξ in $K_R(M)$, the Grothendieck group of real vector bundles over M. If deg f=1, then for f to preserve ξ means just that $f^*\xi=\xi$, and the appropriate notion when deg $f \neq 1$ is given below in §2. Such maps are said to be (ξ, λ) -maps with λ an integer.) Since M is simply connected, one need only compute the Lefschetz number $\mathscr{L}(f)$ of f. Thus there are three natural stages to the solution: the determination of the induced homomorphism $f^*: H^*(M; \mathbb{Z}) \to H^*(M; \mathbb{Z})$ first below the middle dimension, then in the middle dimension (when dim M is even), and finally the determination of how the two are related to each other and how they determine the behaviour above the middle dimension.

As a first step in this direction, we consider here the case of (2m-1)connected M of dimension 4m whose intersection pairing is definite (said to be of class \mathscr{M}_{4m}). It is shown that if ξ is asymmetric enough in a suitable sense (described below in §2), then any (ξ, λ) -map $f: M \to M$ has a fixed point. In particular it follows that if the tangent bundle $\tau(M)$ of Mis asymmetric enough, then a $(\tau M, 1)$ -map $f: M \to M$ has a fixed point. Therefore every homeomorphism of such a manifold M has a fixed point. It is also shown that the product of (ξ, λ) -maps with ξ being asymmetric also has a fixed point.

[Note. At this point I would like to thank Ed Fadell for the suggestions and stimulation offered in many good conversations on this topic.]

2. Statement of results. Suppose that M is a smooth (or PL) simply connected closed manifold of dimension 4m. A map $f: M \to M$ is said to be a (ξ, λ) -map, where λ is an integer, if and only if $f^*\xi = \lambda \xi + p^*\eta$ where

Copyright @ American Mathematical Society 1974

AMS (MOS) subject classifications (1970). Primary 55C20, 57D99; Secondary 54H25, 15A63.

¹ While working on this paper the author has been partially supported by the National Science Foundation GP-29538-A4.