# MANIFOLDS WITH THE FIXED POINT PROPERTY. I 

BY S. Y. HUSSEINI ${ }^{1}$<br>Communicated by Mary Ellen Rudin, November 6, 1973

1. Introduction. Suppose that $f: M \rightarrow M$ is a map of the simply connected closed (smooth or PL) manifold $M$ which preserves a given geometric structure. We shall consider the question of when $f$ has a fixed point. (The geometric structure is described by an element $\xi$ in $K_{R}(M)$, the Grothendieck group of real vector bundles over $M$. If $\operatorname{deg} f=1$, then for $f$ to preserve $\xi$ means just that $f^{*} \xi=\xi$, and the appropriate notion when $\operatorname{deg} f \neq 1$ is given below in $\S 2$. Such maps are said to be $(\xi, \lambda)$-maps with $\lambda$ an integer.) Since $M$ is simply connected, one need only compute the Lefschetz number $\mathscr{L}(f)$ of $f$. Thus there are three natural stages to the solution: the determination of the induced homomorphism $f^{*}: H^{*}(M ; \boldsymbol{Z}) \rightarrow$ $H^{*}(M ; \boldsymbol{Z})$ first below the middle dimension, then in the middle dimension (when $\operatorname{dim} M$ is even), and finally the determination of how the two are related to each other and how they determine the behaviour above the middle dimension.

As a first step in this direction, we consider here the case of $(2 m-1)$ connected $M$ of dimension $4 m$ whose intersection pairing is definite (said to be of class $\mathscr{M}_{4 m}$ ). It is shown that if $\xi$ is asymmetric enough in a suitable sense (described below in $\S 2$ ), then any ( $\xi, \lambda$ )-map $f: M \rightarrow M$ has a fixed point. In particular it follows that if the tangent bundle $\tau(M)$ of $M$ is asymmetric enough, then a $(\tau M, 1)$-map $f: M \rightarrow M$ has a fixed point. Therefore every homeomorphism of such a manifold $M$ has a fixed point. It is also shown that the product of $(\xi, \lambda)$-maps with $\xi$ being asymmetric also has a fixed point.
[Note. At this point I would like to thank Ed Fadell for the suggestions and stimulation offered in many good conversations on this topic.]
2. Statement of results. Suppose that $M$ is a smooth (or PL) simply connected closed manifold of dimension $4 m$. A map $f: M \rightarrow M$ is said to be a ( $\xi, \lambda$ )-map, where $\lambda$ is an integer, if and only if $f^{*} \xi=\lambda \xi+p^{*} \eta$ where

[^0]
[^0]:    AMS (MOS) subject classifications (1970). Primary 55C20, 57D99; Secondary 54H25, 15A63.
    ${ }^{1}$ While working on this paper the author has been partially supported by the National Science Foundation GP-29538-A4.

