SQUARE-INTEGRABLE KERNELS AND GROWTH ESTIMATES FOR THEIR SINGULAR VALUES

BY JAMES ALAN COCHRAN

Communicated by A. S. Householder, October 22, 1973

Let K(x, y), $0 \leq x, y \leq \pi$, be Lebesgue square-integrable. Define

$$K^{(r)}(x, y) \equiv \partial^r K(x, y) / \partial x^r$$
 $(r = 0, 1, 2, \cdots, s)$

for nonnegative integer s, and assume that K(x, y) is extended, as an even function of x if s is even, and as an odd function of x if s is odd, into the domain $-\pi \leq x \leq 0$, and thence as a periodic function of x with period 2π . Let the singular values μ_n , where

$$\phi_n(x) = \mu_n \int_0^{\pi} K(x, y) \Psi_n(y) \, dy,$$

$$\Psi_n(x) = \mu_n \int_0^{\pi} \overline{K(y, x)} \phi_n(y) \, dy$$

with $\|\phi_n\|$, $\|\Psi_n\| \neq 0$, be ordered (indexed) in the natural manner according to increasing size, namely $0 < \mu_1 \leq \mu_2 \leq \mu_3 \leq \cdots$.

In a perhaps overlooked paper, Smithies [8] has shown that

THEOREM 1. If the $K^{(r)}(x, y)$, $0 \le r \le s-1$, are continuous in x, a.e. in y, and $K^{(s)}(x, y)$ is in $\mathcal{L}^p(x)$, a.e. in y, for some 1 , then

(1)
$$\int_0^{\pi} \left[\int_0^{\pi} |K^{(s)}(x+h, y) - K^{(s)}(x-h, y)|^p dx \right]^{2/p} dy \leq C |h|^{2\alpha}$$

for constant C, where $\alpha > 0$ if s > 0, $\alpha > (2-p)/2p$ if s=0, implies

$$1/\mu_n = O(1)/n^{\alpha+s+1-1/p} \quad \text{as } n \to \infty.$$

Recognizing (1) as essentially an integrated Lipschitz condition, and using various properties associated with the class of kernels which satisfy such a condition, we can substantially generalize the above result.

We say that $K^{(s)}(x, y)$ is in Lip α if

$$|K^{(s)}(x+h, y) - K^{(s)}(x-h, y)| < |h|^{\alpha} A(y) \qquad (0 < \alpha \le 1)$$

where A(y) is nonnegative and square-integrable. Likewise $K^{(s)}(x, y)$ is said to be (relatively uniformly) of bounded variation if for all $N \ge 1$ and

Copyright © American Mathematical Society 1974

AMS (MOS) subject classifications (1970). Primary 45H05, 45M05; Secondary 47B10, 47A10.