SQUARE-INTEGRABLE KERNELS AND GROWTH ESTIMATES FOR THEIR SINGULAR VALUES

BY JAMES ALAN COCHRAN

Communicated by A. S. Householder, October 22, 1973
Let $K(x, y), 0 \leqq x, y \leqq \pi$, be Lebesgue square-integrable. Define

$$
K^{(r)}(x, y) \equiv \partial^{r} K(x, y) / \partial x^{r} \quad(r=0,1,2, \cdots, s)
$$

for nonnegative integer s, and assume that $K(x, y)$ is extended, as an even function of x if s is even, and as an odd function of x if s is odd, into the domain $-\pi \leqq x \leqq 0$, and thence as a periodic function of x with period 2π. Let the singular values μ_{n}, where

$$
\begin{aligned}
\phi_{n}(x) & =\mu_{n} \int_{0}^{\pi} K(x, y) \Psi_{n}(y) d y, \\
\Psi_{n}(x) & =\mu_{n} \int_{0}^{\pi} \overline{K(y, x)} \phi_{n}(y) d y
\end{aligned}
$$

with $\left\|\phi_{n}\right\|,\left\|\Psi_{n}\right\| \neq 0$, be ordered (indexed) in the natural manner according to increasing size, namely $0<\mu_{1} \leqq \mu_{2} \leqq \mu_{3} \leqq \cdots$.
In a perhaps overlooked paper, Smithies [8] has shown that
Theorem 1. If the $K^{(r)}(x, y), 0 \leqq r \leqq s-1$, are continuous in x, a.e. in y, and $K^{(s)}(x, y)$ is in $\mathscr{L}^{p}(x)$, a.e. in y, for some $1<p \leqq 2$, then

$$
\begin{equation*}
\int_{0}^{\pi}\left[\int_{0}^{\pi}\left|K^{(s)}(x+h, y)-K^{(s)}(x-h, y)\right|^{p} d x\right]^{2 / p} d y \leqq C|h|^{2 \alpha} \tag{1}
\end{equation*}
$$

for constant C, where $\alpha>0$ if $s>0, \alpha>(2-p) / 2 p$ if $s=0$, implies

$$
1 / \mu_{n}=O(1) / n^{\alpha+s+1-1 / p} \quad \text { as } n \rightarrow \infty
$$

Recognizing (1) as essentially an integrated Lipschitz condition, and using various properties associated with the class of kernels which satisfy such a condition, we can substantially generalize the above result.
We say that $K^{(s)}(x, y)$ is in Lip α if

$$
\left|K^{(s)}(x+h, y)-K^{(s)}(x-h, y)\right|<|h|^{\alpha} A(y) \quad(0<\alpha \leqq 1)
$$

where $A(y)$ is nonnegative and square-integrable. Likewise $K^{(s)}(x, y)$ is said to be (relatively uniformly) of bounded variation if for all $N \geqq 1$ and

[^0]
[^0]: AMS (MOS) subject classifications (1970). Primary 45H05, 45M05; Secondary 47B10, 47A10.

