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Let O be a <r-finite measure space. Let K be a (nonlinear) montone 
operator and let (Fu)(x)=f(x, u{x)) be a Niemytski operator. We consider 
the Hammer stein type equation 

(1) u + KFu = g. 

A detailed discussion and a complete bibliography about equation (1) 
can be found in [3]. The new feature about the results we present here is 
the fact that we do not assume any coercivity for F. When Fis monotone 
and K maps LX(Q) into Z,°°(£i), there is no growth restriction on F either 
(cf. Theorem 1). The monotonicity of F can be weakened when Kis com
pact (cf. Theorem 4). Also some of these results are valid for systems in 
the case where F is the gradient of a convex function (cf. Theorem 5). 

Assume 
(2) Kis a monotone hemicontinuous mapping from //(fi) into L°°(Q) 

which maps bounded sets into bounded sets, 
(3) f(x, r):CixR-^R is continuous and nondecreasing in r for a.e. 

x eQ, and is integrable in x for all r e R. 

THEOREM 1. Under the assumptions (2) and (3), equation (1) has 
one and only one solution u G L°°(Q) for every g e L°°(£î). 

Uniqueness. Let ux and u2 be two solutions of (1). By the monotonicity 
of K we get 

(u^x) - u2(x)) • ( ƒ (x, Mi(x)) - ƒ (Xi, w2(x))) dx <; 0 

which implies that f(x, u1(x))=f(x, u2(x)) a.e. on CI and therefore by 
(1), W!=w2. 

In proving existence of u we shall use the following 

LEMMA 1. Let X be a Banach space and let K:X-^X* and F:X*-+X 
be two monotone hemicontinuous operators. Let { w j c j * , {vn}<^X and 
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