HARMONIC QUASICONFORMAL MAPPINGS OF RIEMANNIAN MANIFOLDS

BY SAMUEL I. GOLDBERG ${ }^{1}$ AND TORU ISHIHARA

Communicated by S. S. Chern, August 1, 1973

1. Introduction. In this note, we announce some results concerning the distance-volume-decreasing property of harmonic quasiconformal mappings of Riemannian manifolds. Details will appear elsewhere.

Let M and N be C^{∞} Riemannian manifolds of dimensions m and n, respectively. Let $f: M \rightarrow N$ be a C^{∞} mapping. The Riemannian metrics of M and N can be written locally as $d s_{M}^{2}=\omega_{1}^{2}+\cdots+\omega_{m}^{2}$ and $d s_{N}^{2}=\omega_{1}^{* 2}+$ $\cdots+\omega_{n}^{* 2}$, where $\omega_{i}(1 \leqq i \leqq m)$ and $\omega_{a}^{*}(1 \leqq a \leqq n)$ are linear differential forms in M and N, respectively. The structure equations in M are

$$
\begin{gathered}
d \omega_{i}=\sum_{j} \omega_{j} \wedge \omega_{j i} \\
d \omega_{i j}=\sum_{j} \omega_{i k} \wedge \omega_{k j}-\frac{1}{2} \sum_{k, l} R_{i j k l} \omega_{k} \wedge \omega_{l} .
\end{gathered}
$$

Similar equations are valid in N and we will denote the corresponding quantities in the same notation with asterisks. Let $f^{*} \omega_{a}^{*}=\sum_{i} A_{i}^{a} \omega_{i}$. Then the covariant differential of A_{i}^{a} is defined by

$$
D A_{i}^{a} \equiv d A_{i}^{a}+\sum_{j} A_{j}^{a} \omega_{j i}+\sum_{b} A_{\imath}^{b} \omega_{b a}^{*} \equiv \sum_{j} A_{i j}^{a} \omega_{j}
$$

with $A_{i j}^{a}=A_{j i}^{a}$. The mapping f is called harmonic (resp. totally geodesic) if $\sum_{i} A_{i i}^{a}=0$ (resp. $A_{i j}^{a}=0$).

If $m=n$, then at each point of M the matrix $\left(A_{i}^{a}\right)$ has the adjoint $\left(B_{a}^{i}\right)$. Let C be the scalar invariant $\sum B_{a}^{i} B_{b}^{k} A_{k j}^{a} A_{i j}^{b}$. In [2], Chern and one of the authors proved the following theorems which may be regarded as extensions of Schwarz's lemma.

Theorem I. Let B^{n} be the n-dimensional open ball with the standard hyperbolic metric and N an n-dimensional Riemannian manifold. Let $f: B^{n} \rightarrow N$ be a harmonic mapping satisfying the condition $C \leqq 0$. If N is an Einstein manifold with scalar curvature $R^{*} \leqq-4 n(n-1)$ or if the sectional curvature of N is $\leqq-4$, then f is volume-decreasing.

[^0]
[^0]: AMS (MOS) subject classifications (1970). Primary 53A99, 53C99, 30A60.
 Key words and phrases. Harmonic mappings, quasiconformal mappings, Schwarz's lemma, distance-volume decreasing.
 ${ }^{1}$ This research was supported in part by the National Science Foundation. Science Research Council Professor at the University of Liverpool.

