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Given a cartesian closed category E with subobject classifier t:l-*Q, 
it is shown that the functor Q( ) : E0V->E is tripleable. Standard results from 
the theory of triples are then used to show that E has /-colimits if and only 
if it has 7op-limits. This gives a new proof of Mikkelsen's theorem which 
states that E has all finite colimits. 

1. Preliminaries on topoi. A category E is called an elementary topos 
in [6] if E is cartesian closed and has a subobject classifier *:1->£L The 
reader who is not familiar with these notions is referred to [3], [4], and 
[6] (in [3] and [4], the existence of finite limits and colimits is assumed, 
but we do not make that assumption here). Throughout this paper E 
will be an elementary topos. 

E has finite limits since the existence of binary products and terminal 
object is assumed in cartesian closedness, and the equalizer of/, g:A-*B 
can be constructed as the subobject classified by A-+{f,9)BxB->ôQ, where 
ô is the characteristic morphism of the diagonal A:B>->BxB. 

For any object A of E the evaluation morphism evA : ClA x A-+Q. is 
the characteristic morphism of a subobject eA>-+ClA X A called the mem
bership relation. 

If a:A'>->A is a monomorphism in E, we get another monomorphism 

ClA'xa 

eA^-> QLA X A' > > Q,A X A 

whose characteristic morphism ClA xA-+Cl corresponds, by exponential 
adjointness, to a morphism QA'-+QA which is denoted 3 a and called the 
direct image morphism. 

The following lemma is fundamental. 

LEMMA. Let 
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