QUASICONFORMAL EXTENSION OF HOLOMORPHIC MAPPINGS OF A BALL IN C^n

BY J. A. PFALTZGRAFF¹

Communicated by F. W. Gehring, October 16, 1973

Let C^n denote the space of n complex variables $z=(z_1, \dots, z_n)$ with Euclidean norm ||z||. The open unit ball $\{z \in C^n : ||z|| < 1\}$ is denoted by B^n . We consider holomorphic functions $f(z)=(f_1(z), \dots, f_n(z)), z \in B^n$, from B^n into C^n . The second derivative of such a function is a symmetric bilinear operator, $D^2f(z)(\cdot, \cdot)$ on $C^n \times C^n$, and $D^2f(z)(z, \cdot)$ is the linear operator obtained by restricting $D^2f(z)$ to $z \times C^n$, with matrix representation

$$D^2 f(z)(z,\cdot) = \left(\sum_{m=1}^n \frac{\partial^2 f_k(z)}{\partial z_i \partial z_m} z_m\right), \qquad 1 \leq j, k \leq n.$$

A locally biholomorphic mapping f(z) from a domain $G \subset C^n$ into C^n is said to be K-quasiconformal in G if $||Df(z)||^n \le K|\det Df(z)|$, $z \in G$, where || || denotes the standard operator norm $||A|| = \sup\{||Aw|| : ||w|| \le 1\}$, $A \in \mathcal{L}(C^n)$.

The purpose of this note is to announce the following n-dimensional $(n \ge 1)$ generalizations of one-dimensional results due to J. Becker [1].

THEOREM. Let f(z) with Df(0)=I be locally biholomorphic in B^n and satisfy

(1)
$$(1 - ||z||^2) ||(Df(z))^{-1}D^2f(z)(z, \cdot)|| \le c, \quad z \in B^n.$$

If $c \leq 1$ then f is univalent in B^n and

$$||z||/(1+c||z||)^2 \le ||f(z)|| \le ||z||/(1-c||z||)^2, \quad z \in B^n.$$

If f is K-quasiconformal in B^n and c<1 then f is univalent and continuous in the closed ball, \bar{B}^n , and f can be extended to a quasiconformal homeomorphism of R^{2n} onto R^{2n} .

For n=1, (1) is $|zf''(z)|f'(z)| \le c/(1-|z|^2)$, the local biholomorphy implies f is 1-quasiconformal in B^1 , and our theorem coincides with

AMS (MOS) subject classifications (1970). Primary 32A10; Secondary 30A36, 30A60

¹ Research supported in part by the U.S. Army Research Office—Durham Grant 31—124-72G182E.