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1. Introduction. In this announcement the Smale-Hirsch classification 
of immersions ([8], [5]) is extended to maps of arbitrary constant rank, 
under certain conditions on the source manifold. 

THEOREM 1. If M is open and has a proper Morse function with no 
critical points of index >A;, then the differential map d:Homk(M9 W)-+ 
Link(TM, TW) is a weak homotopy equivalence. 

(A manifold with such a Morse function will be said to have geometric 
dimension ^k. We will write geo dim M^K.) 

Notation. M and W are smooth manifolds with tangent bundles TM, 
TW; Homk(M, W) is the space of smooth maps of rank k from M to W, 
with the C^compact-open topology; Link(TM, TW) is the space of 
continuous maps: TM-+TW which are fiberwise linear maps of rank k, 
with the compact open topology; d(f)=df 

REMARKS. 1. Weakening the hypotheses leads to false statements. If 
M is not open there are counterexamples when k=dim W as. in [7]. 
Otherwise, take M to be the parallelizable manifold Sk+1xR; then the 
identity map of M can be covered by H e Link(TM, TM) but H cannot 
be homotopic to the differential of an ƒ G Homfc(M, M) since such an ƒ 
(by Sard's theorem) would be null-homotopic. I owe this example to 
David Frank. 

2. When k=dimM this gives the Smale-Hirsch theorem for open 
manifolds, but when A:=dim W this does not give the full classification 
of submersions [7]. The missing cases will be considered in a future article. 
(ADDED IN PROOF. A necessary and sufficient condition for He 
Link(TM, TW) to be homotopic to the differential of some ƒ e Homk(M, W) 
is given, for arbitrary open M, in M. L. Gromov, Singular smooth maps, 
Mat. Zametki 14 (1973), 509-516. It is equivalent to requiring that H 
factor through a ^-dimensional bundle over a fc-dimensional complex.) 
Immersions and submersions are the only overlap between this theorem 
and Feit's classification of A>mersions (maps of rank everywhere^/:) 
[2] 

3. This theorem is not a special case of Gromov's theorem [3], since 
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