ON DECOMPOSITIONS OF A MULTI-GRAPH INTO SPANNING SUBGRAPHS

BY RAM PRAKASH GUPTA ${ }^{1}$
Communicated by Gian-Carlo Rota, April 23, 1973

1. Let G be a multi-graph, i.e., a finite graph with no loops. $V(G)$ and $E(G)$ denote the vertex-set and edge-set of G, respectively. For $x \in V(G)$, $d(x, G)$ denotes the degree (or valency) of x in G and $m(x, G)$ denotes the multiplicity of edges at x in G, i.e., the minimum number m such that x is joined to any other vertex in G by at most m edges.

A graph H is called a spanning subgraph of G if $V(H)=V(G)$ and $E(H) \subseteq E(G)$. Let k be any positive integer. Let

$$
\begin{equation*}
\sigma: G=H_{1} \cup H_{2} \cup \cdots \cup H_{k} \tag{1.1}
\end{equation*}
$$

be a decomposition of G into k spanning subgraphs so that (1) H_{1}, H_{2}, \cdots, H_{k} are spanning subgraphs of G; (2) $H_{1}, H_{2}, \cdots, H_{k}$ are pairwise edgedisjoint; and, (3) $\bigcup_{1 \leqq \alpha \leqq k} E\left(H_{\alpha}\right)=E(G)$. For each $x \in V(G)$, let $v(x, \sigma)$ denote the number of subgraphs H_{α} in σ such that $d\left(x, H_{\alpha}\right) \geqq 1$. Evidently,

$$
\begin{equation*}
\nu(x, \sigma) \leqq \min \{k, d(x, G)\} \quad \text { for all } x \in V(G) \tag{1.2}
\end{equation*}
$$

2. Given a multi-graph G and any positive integer k, we consider the problem of determining a decomposition σ of G into k spanning subgraphs such that $v(x, \sigma)$ is as large as possible for each vertex $x \in V(G)$. In particular, we have proved the following two theorems.

Theorem 2.1. If G is a bipartite graph, then, for every positive integer k, there exists a decomposition σ of G into k spanning subgraphs such that

$$
\begin{equation*}
\nu(x, \sigma)=\min \{k, d(x, G)\} \quad \text { for all } x \in V(G) \tag{2.1}
\end{equation*}
$$

Theorem 2.2. If G is a multi-graph, then, for every positive integer k, there exists a decomposition σ of G into k spanning subgraphs such that

$$
\begin{align*}
v(x, \sigma) \geqq \min \{k-m(x, G), d(x, G)\} & \text { if } d(x, G) \leqq k \tag{2.2}\\
\geqq \min \{k, d(x, G)-m(x, G)\} & \text { if } d(x, G) \geqq k,
\end{align*}
$$

for all $x \in V(G)$.

[^0]
[^0]: AMS (MOS) subject classifications (1970). Primary 05C15.
 Key words and phrases. Multi-graph, bipartite graph, balanced hypergraph, spanning subgraph, cover, matching, cover index, chromatic index.
 ${ }^{1}$ This research was supported in part by ONR contract N00014-67-A-0232-0016.

