MANIFOLDS OF RIEMANNIAN METRICS WITH PRESCRIBED SCALAR CURVATURE

BY ARTHUR E. FISCHER AND JERROLD E. MARSDEN¹

Communicated by S. S. Chern, August 1, 1973

1. Introduction. Throughout, M will denote a C^{∞} compact connected oriented *n*-manifold, $n \ge 2$. Let $\rho: M \to \mathbb{R}$ be a C^{∞} function, \mathcal{M} the space of C^{∞} riemannian metrics on M and

$$\mathscr{M}_{\rho} = \{ g \in \mathscr{M} : R(g) = \rho \}$$

where R(g) is the scalar curvature of g. As in Ebin [3], a superscript s will denote objects in the corresponding Sobolev space, s > n/2+1 (one can also treat $W^{s,p}$ spaces in the same way), and we also allow $s = \infty$ so $\mathcal{M}^{\infty} = \mathcal{M}$. Sign conventions on curvatures are as in Lichnerowicz [10].

Two of our main results follow:

THEOREM 1. If ρ is not identically zero or a positive constant, then \mathscr{M}_{s}^{ρ} is a smooth submanifold of \mathscr{M}^{s} .

We can also treat the case $\rho \equiv 0$. Let \mathscr{F}^s denote the set of flat metrics in \mathscr{M}^s . Then we have

THEOREM 2. Assume $\mathcal{F}^s \neq \emptyset$. Writing $\mathcal{M}_0^s = (\mathcal{M}_0^s | \mathcal{F}^s) \cup \mathcal{F}^s$, \mathcal{M}_0^s is the disjoint union of closed submanifolds.

REMARK. If dim M=2, $\mathscr{M}_0^s = \mathscr{F}^s$, and if dim M=3, the hypothesis that $\mathscr{F}^s \neq \varnothing$ can be dropped.

The proof of Theorem 1 also allows us to conclude that a solution h of the linearized equations $DR(g_0) \cdot h=0$ is tangent to a curve of exact solutions of $R(g)=\rho$ through a given solution g_0 , provided ρ is not a constant ≥ 0 . In the terminology of [4] we say the equation $R(g)=\rho$ is *linearization-stable* at g_0 . From Theorem 3 below the equation R(g)=0 is still linearization-stable about a solution g_0 provided $Ric(g_0)$ is not identically zero.

For the singular case $\rho = 0$, Theorem 2 incorporates an isolation theorem inspired by the work of Brill and Deser [2], namely, that the flat metrics are isolated solutions of R(g)=0. As a corollary one has: If g(t) is a

AMS (MOS) subject classifications (1970). Primary 53C25, 58D15; Secondary 35J60, 58G99, 47H15.

Key words and phrases. Scalar curvature, submanifolds of riemannian metrics, flat metrics, isolated metrics, infinitesimal deformations, stability of linearized equations.

¹ The authors were partially supported by NSF grants GP-39060 and GP-15735.