GENERALIZED SUPER-PARABOLIC FUNCTIONS

BY NEIL EKLUND

Communicated by Alberto Calderón, September 22, 1973

The purpose of this note is to announce results which generalize potential theory (superharmonic functions) to a broad class of parabolic operators. Many of the properties of superharmonic functions carry over to functions in this new class. Let $Q = \Omega \times (0, T)$ where $\Omega \subset E^n$ is a bounded domain and T > 0 is a scalar. All functions will be defined on \overline{Q} and will be written as functions of (x, t) with $x \in \overline{\Omega}$ and $t \in [0, T]$.

For $(x, t) \in \overline{Q}$ assume

(a) $a_{ij}(x, t)$ is a bounded, measurable function for $i, j=1, 2, \dots, n$ and assume there is a constant $\lambda > 0$ such that $\sum a_{ij}(x, t)z_i z_j \ge \lambda |z|^2$ for all $z \in E^n$ and almost all $(x, t) \in Q$.

(b) $c(x, t) \in L^{q}[0, T; L^{p}(\Omega)]$ for $n/2p+1/q<1, 1< p, q \leq \infty$.

(c) $b_j(x, t), d_j(x, t) \in L^q[0, T; L^p(\Omega)]$ for $j=1, \dots, n$ and $n/2p+1/q < \frac{1}{2}$, $2 < p, q \leq \infty$.

The parabolic operator under consideration is defined by

$$Lu = u_t - \{a_{ij}(x, t)u_{,i} + d_j(x, t)u\}_{,j} - b_j(x, t)u_{,j} - c(x, t)u$$

where $u_{,j} = \partial u / \partial x_j$ and an index *i* or *j* is summed over $1 \leq i, j \leq n$ whenever it is repeated in a product.

DEFINITION 1. u(x, t) is a weak solution of Lu=0 in Q if u is locally in $L^2[0, T; H^{1,2}(\Omega)]$ and $\iint_Q [a_{ij}u_{,j}\phi_{,j}+d_j\phi_{,j}u-b_ju_{,j}\phi-cu\phi-u\phi_t] dx dt = 0$ for all $\phi \in C_0^1(Q)$.

Let $\partial_p Q = \{\partial \Omega \times [0, T]\} \cup \{\Omega \times (0)\}$ denote the parabolic boundary of Q. Due to the number of definitions and results, they are stated below with no proofs.

THEOREM 1. Let $f \in C(\partial_p Q)$ and let u = u(x, t) be the weak solution of the boundary value problem

$$Lu = 0$$
 on Q . $u = f$ on $\partial_p Q$.

Then, to each $(x, t) \in Q$, there corresponds a nonnegative Borel measure

AMS (MOS) subject classifications (1970). Primary 35K20, 31C05; Secondary 35D05. Key words and phrases. Superharmonic functions, parabolic operators.

Copyright © American Mathematical Society 1974