PSEUDO-INVERSES OF OPERATORS

BY J. J. KOLIHA
Communicated by Robert Bartle, August 13, 1973

1. Let X and Y be complex Banach spaces, A a bounded linear operator from X to Y. If the null space $N(A)$ and the closed range $R(A)^{-}$possess closed complementary subspaces U in X and V in Y respectively, the pseudo-inverse A^{\dagger} of A relative to (U, V) is defined as the linear extension of $(A \mid U)^{-1}$ to $D\left(A^{\dagger}\right)=R(A)+V$ with the null space $N\left(A^{\dagger}\right)=V$. (This is a generalization to Banach space of the standard pseudo-inverse of a Hilbert space operator (cf. [8]). If $R(A)$ is closed, the definition agrees with the ones given in [1] and [7]. In this case A^{\dagger} is defined and bounded on all of Y.) If $U=R(B)^{-}$and $V=N(B)$ for some bounded linear operator $B: Y \rightarrow X, A^{\dagger}$ will be called the pseudo-inverse of A relative to B, written $A^{\dagger B}$. Proposition 6 of [6] leads to the following result.

Theorem 1. Suppose $A: X \rightarrow Y$ and $B: Y \rightarrow X$ are bounded linear operators such that (a) $Y=R(A)^{-} \oplus N(B)$, (b) the operator $T=I-B A$ is strongly power convergent $\left(\left\{T^{n}\right\}\right.$ converges strongly). Then $A^{\dagger B}$ exists and is represented by

$$
\begin{equation*}
A^{\dagger B} y=\sum_{n=0}^{\infty}(I-B A)^{n} B y \tag{1}
\end{equation*}
$$

where the series converges in norm iff $y \in R(A)+N(B)$.
When T in Theorem 1 is uniformly power convergent ($\left\{T^{n}\right\}$ converges uniformly), then $R(A)$ is closed, (1) converges uniformly, and $A^{\dagger B}$ is defined and bounded on all of Y. In the case that A is an operator between Hilbert spaces, and $B=\alpha A^{*}$ with $0<\alpha<2\|A\|^{-2}$, Theorem 1 gives the well-known representation of the standard Hilbert space pseudo-inverse [2], [7], [8].
2. Let $A: X \rightarrow Y$ be a bounded linear operator between Banach spaces. A bounded linear operator $B: Y \rightarrow X$ is called a pseudo-adjoint of A if

$$
\begin{equation*}
X=N(A) \oplus R(B)^{-}, \quad Y=R(A)^{-} \oplus N(B) \tag{2}
\end{equation*}
$$

[^0]
[^0]: AMS (MOS) subject classifications (1970). Primary 47A99, 47A50; Secondary 47A10, 65J05.
 Key words and phrases. Pseudo-inverse of an operator, partial inverse, series expansion, power convergent operator, pseudo-adjoint, spectrum of an operator.

