PSEUDO-INVERSES OF OPERATORS

BY J. J. KOLIHA

Communicated by Robert Bartle, August 13, 1973

1. Let X and Y be complex Banach spaces, A a bounded linear operator from X to Y. If the null space N(A) and the closed range $R(A)^-$ possess closed complementary subspaces U in X and V in Y respectively, the *pseudo-inverse* A^{\dagger} of A relative to (U, V) is defined as the linear extension of $(A|U)^{-1}$ to $D(A^{\dagger})=R(A)+V$ with the null space $N(A^{\dagger})=V$. (This is a generalization to Banach space of the standard pseudo-inverse of a Hilbert space operator (cf. [8]). If R(A) is closed, the definition agrees with the ones given in [1] and [7]. In this case A^{\dagger} is defined and bounded on all of Y.) If $U=R(B)^-$ and V=N(B) for some bounded linear operator $B: Y \rightarrow X, A^{\dagger}$ will be called the pseudo-inverse of A relative to B, written $A^{\dagger B}$. Proposition 6 of [6] leads to the following result.

THEOREM 1. Suppose $A: X \rightarrow Y$ and $B: Y \rightarrow X$ are bounded linear operators such that (a) $Y = R(A)^- \oplus N(B)$, (b) the operator T = I - BA is strongly power convergent ($\{T^n\}$ converges strongly). Then $A^{\dagger B}$ exists and is represented by

(1)
$$A^{\dagger B}y = \sum_{n=0}^{\infty} (I - BA)^n By,$$

where the series converges in norm iff $y \in R(A) + N(B)$.

When T in Theorem 1 is uniformly power convergent ($\{T^n\}$ converges uniformly), then R(A) is closed, (1) converges uniformly, and $A^{\dagger B}$ is defined and bounded on all of Y. In the case that A is an operator between Hilbert spaces, and $B = \alpha A^*$ with $0 < \alpha < 2||A||^{-2}$, Theorem 1 gives the well-known representation of the standard Hilbert space pseudo-inverse [2], [7], [8].

2. Let $A: X \rightarrow Y$ be a bounded linear operator between Banach spaces. A bounded linear operator $B: Y \rightarrow X$ is called a *pseudo-adjoint* of A if

(2)
$$X = N(A) \oplus R(B)^{-}, \quad Y = R(A)^{-} \oplus N(B),$$

Copyright @ American Mathematical Society 1974

AMS (MOS) subject classifications (1970). Primary 47A99, 47A50; Secondary 47A10, 65J05.

Key words and phrases. Pseudo-inverse of an operator, partial inverse, series expansion, power convergent operator, pseudo-adjoint, spectrum of an operator.