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EQUIVARIANT HOMOTOPY THEORY 

BY C. VASEEKARAN 

Communicated by Glen E. Bredon, August 30, 1973 

In this note we announce an obstruction theory for extending 
(continuous) equivariant maps defined on a certain class of G-spaces, 
where G is a compact Lie group. The details of this work will be published 
elsewhere. Our results barely touch upon the attendant problem of pro­
viding techniques that would serve in practice for the computation of 
the obstruction groups. In general this last problem presents consider­
ably greater difficulties than in the case of a finite group G, which has 
been treated fairly exhaustively in [1]. The author expresses his deep 
gratitude to Professor Glen E. Bredon in consultation with whom these 
results were obtained. 

Let G be a compact Lie group. If H is a closed subgroup of G, a closed 
Gstem of type (H) and equivariant dimension n is defined to be a G-
space which is equivariantly homeomorphic to Bn x G/H, where Bn is the 
standard «-cell, GjH is the homogeneous G-space consisting of the left 
cosets of H in G, and the action of G is the product of the trivial action 
on Bn and the usual action on G/H. A Hausdorff G-space K is said to be a 
G-complex if it is filtered by an ascending sequence of closed invariant 
subspaces Kn, whose union is K, such that Kr1=0 and, for each n9 

Kn is obtained from K*1*1 by attaching any number of «-stems by equi­
variant maps defined on the boundaries Sn~~1xG/H of the standard 
«-stems Bn X GjH. A G-complex K is also required to have the topology 
coherent with the sequence of subspaces Kn. The least integer n such that 
Kn=K is called the equivariant dimension of K and is denoted by dim# K. 
The class of G-complexes is the analogue in the equiyariant category of 
CW-complexes in the topological category. (See [3] for the definition and 
some of the properties of a CW-complex.) When G is a finite group 
G-complexes have been defined by Bredon in [1]. Our notion is derived 
from his and we extend his techniques to the more general case. 

Matumoto has defined in [2] what he calls a G-CW-complex. His 
definition is equivalent to that of a G-complex K whose orbit space K\G 
is a locally finite CW-complex. He has also indicated in [2] a proof of the 
important result that a differentiable G-manifold is a G-CW-complex 

AMS (MOS) subject classifications (1970). Primary 55B25, 57E10. 

Copyright © American Mathematical Society 1974 

322 


