ONE-SIDED APPROXIMATION AND VARIATIONAL INEQUALITIES

BY UMBERTO MOSCO AND GILBERT STRANG ${ }^{1}$

Communicated by Hans Weinberger, May 1, 1973

Abstract. For piecewise linear approximation of the unilateral Laplace equation (also known as the obstacle problem, and governed by a variational inequality), we prove that the gradient of the error $u-u_{h}$ is of order h. The proof rests on approximation of nonnegative functions U by nonnegative splines $V_{h} \leqq U$.

We are interested in one of the first and most fundamental of the variational problems introduced by Fichera, Stampacchia, and Lions [3], [4], [6]:

Find that function u in the convex set

$$
K=\left\{v \mid v \in \mathscr{H}_{0}^{1}(\Omega), v \geqq \psi \text { on } \Omega\right\}
$$

which minimizes

$$
I(v)=a(v, v)-2(f, v)=\iint_{\Omega}\left(v_{x}^{2}+v_{y}^{2}-2 f v\right) d x d y
$$

If the "obstacle function" ψ were absent, this would be the classical Dirichlet problem for Poisson's equation $-\Delta u=f$, and the condition for a minimum would be a variational equation: $a(u, v)=(f, v)$ for v in \mathscr{H}_{0}^{1}. This is the weak form of Poisson's equation, and coincides with the engineer's "equation of virtual work".

For minimization over K instead of the full space \mathscr{H}_{0}^{1}, the variational equation turns into an inequality-just as, for minimization of a function g over $0 \leqq x \leqq 1$, the possibility of minima at the endpoints alters the usual $d g / d x=0$. The condition that u be minimizing is

$$
\begin{equation*}
a(u, v-u) \geqq(f, v-u) \quad \text { for all } v \text { in } K . \tag{1}
\end{equation*}
$$

Suppose we solve this problem approximately, by the Ritz principle: The approximation u_{h} minimizes the functional I over a finite-dimensional

[^0]
[^0]: AMS (MOS) subject classifications (1970). Primary 35J20, 65N30, 41A15.
 Key words and phrases. Approximation, splines, variational problem, Ritz method.
 ${ }^{1}$ The first author was supported by GNAFA-CNR and enjoyed the hospitality of the Courant Institute under a CNR-NATO grant. The second author was supported by the National Science Foundation (P22928).

