FOLIATIONS AND GROUPS OF DIFFEOMORPHISMS

BY WILLIAM THURSTON

Communicated by William Browder, July 7, 1973

John Mather has described a close relation between framed codimension-one Haefliger structures (these form a class of singular foliations), and the group of compactly supported diffeomorphisms of \mathbb{R}^1 , with discrete topology [11], [12], [14]. In this announcement I will describe generalizations of his ideas to higher codimension Haefliger structures and groups of diffeomorphisms of arbitrary manifolds. See Haefliger [7] for a development of Haefliger structures and their classifying spaces.

I would like to thank Boyd Anderson, André Haefliger and John Mather for long discussions and proddings about this material, and many others for helpful conversations and relevant information.

Let $\text{Diff}^r(M^p)$ denote the group of C^r diffeomorphisms of M^p , a closed manifold. Let $\text{Diff}^r_0(M^p)$ denote the connected component of the identity.

THEOREM 1. Diff_0^{∞} (M^p) is a simple group.

The proof makes use of both the theorem of Epstein [4] that the commutator subgroup of $\text{Diff}_0(M^p)$ is simple, and of the result of M. Herman [9] which gives the case M^p is a *p*-torus.

THEOREM 2. $B\overline{\Gamma}_{p}^{\infty}$ is (p+1)-connected, where $B\overline{\Gamma}_{p}^{\infty}$ is the classifying space for framed, codimension p, C^{∞} , Haefliger structures.

The more usual notation is $F\Gamma_p^{\infty} = B\overline{\Gamma}_p^{\infty}$. Haefliger proved [6] that $B\overline{\Gamma}_p^r$ is *p*-connected for $1 \leq r \leq \infty$; Mather proved that $B\overline{\Gamma}_1^{\infty}$ is 2-connected.

Theorem 2 means that two C^{∞} foliations of a manifold coming from nonsingular vector fields are homotopic as Haefliger structures if and only if the normal bundles are isomorphic.

Theorems 1 and 2 are proven by showing they are related; cf. Theorem 4 for a statement of a relationship.

COROLLARY. $P_1^{[p/2]}$ is nontrivial in $H^*(B\Gamma_p^{\infty}; \mathbf{R})$ where P_1 is the first real Pontrjagin class of the normal bundle to the canonical Haefliger structure.

AMS (MOS) subject classifications (1970). Primary 57D30, 57D50.

Copyright © American Mathematical Society 1974