FOLIATIONS AND GROUPS OF DIFFEOMORPHISMS

BY WILLIAM THURSTON

Cormmunicated by William Browder, July 7, 1973

John Mather has described a close relation between framed codi-mension-one Haefliger structures (these form a class of singular foliations), and the group of compactly supported diffeomorphisms of \boldsymbol{R}^{1}, with discrete topology [11], [12], [14]. In this announcement I will describe generalizations of his ideas to higher codimension Haefliger structures and groups of diffeomorphisms of arbitrary manifolds. See Haefliger [7] for a development of Haefliger structures and their classifying spaces.

I would like to thank Boyd Anderson, André Haefliger and John Mather for long discussions and proddings about this material, and many others for helpful conversations and relevant information.

Let $\operatorname{Diff}^{r}\left(M^{p}\right)$ denote the group of C^{r} diffeomorphisms of M^{p}, a closed manifold. Let $\mathrm{Diff}_{0}^{r}\left(M^{p}\right)$ denote the connected component of the identity.

Theorem 1. $\quad \mathrm{Diff}_{0}^{\infty}\left(M^{p}\right)$ is a simple group.
The proof makes use of both the theorem of Epstein [4] that the commutator subgroup of $\operatorname{Diff}_{0}\left(M^{p}\right)$ is simple, and of the result of M. Herman [9] which gives the case M^{p} is a p-torus.

ThEOREM 2. $B \bar{\Gamma}_{p}^{\infty}$ is $(p+1)$-connected, where $B \bar{\Gamma}_{p}^{\infty}$ is the classifying space for framed, codimension p, C^{∞}, Haefliger structures.

The more usual notation is $F \Gamma_{p}^{\infty}=B \bar{\Gamma}_{p}^{\infty}$. Haefliger proved [6] that $B \bar{\Gamma}_{p}^{r}$ is p-connected for $1 \leqq r \leqq \infty$; Mather proved that $B \bar{\Gamma}_{1}^{\infty}$ is 2-connected.

Theorem 2 means that two C^{∞} foliations of a manifold coming from nonsingular vector fields are homotopic as Haefliger structures if and only if the normal bundles are isomorphic.

Theorems 1 and 2 are proven by showing they are related; cf. Theorem 4 for a statement of a relationship.

Corollary. $P_{1}^{[p / 2]}$ is nontrivial in $H^{*}\left(B \Gamma_{p}^{\infty} ; \boldsymbol{R}\right)$ where P_{1} is the first real Pontrjagin class of the normal bundle to the canonical Haefliger structure.

