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1. Introduction. We wish to consider the following two problems 
for E9 F, G Banach spaces over the complex field C and i f (E; F), 
Jf(F; G),3f(E;G) the corresponding spaces of holomorphic functions 
between them (we follow the definitions and notation given in [3]): 
(1) For what vector subspaces X^3tf{E\ F), Y<=Jf(F; G), Zajf(E; G) 
and corresponding locally convex topologies rx, r F , rz will the compo­
sition <f>: (ƒ, g) e (X, rx) X (7 , rY)^g of e (Z, rz) be holomorphic? (2) 
Investigate the holomorphy of </>:^(U; V)xJe(V; W)-+J>f(U; W) for 
£ƒ<=£, V^F, W^G open. We are driven to consider general locally 
convex topologies on X, Y9 Z since if <f> holomorphic means it is separately 
continuous, then, in particular, the evaluation ƒ G {2tf(F\ C), r)h->f(x) e C 
is continuous. But from [1] and [2], if F is, for example, a separable 
or reflexive infinite dimensional Banach space, then r is not first countable. 

2. Definitions of holomorphy [4]. Let X and Y be complex locally 
convex spaces (LCS), and W an open, nonempty subset of X. Then 
ƒ : W-> Y is said to be holomorphic if for every f G W there is a sequence 
Pm G é?(mX; Y) (the space of continuous m-homogeneous polynomials 
from X to F), ra=0, 1, • • • , such that for each continuous seminorm /? 
on Y, one can find a neighborhood F of f in W for which 

Jim j8 
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M 

/(x)-2p-(*-£) = 0 

uniformly for x e F. ƒ is said to be G-holomorphic (provided Xis Hausdorff) 
if for each | G W, X G X, the map X e V\-+f(Ç+Àx) G F is holomorphic, 
where V={X e C:ij+Àx G W}. We denote the space of holomorphic 
(G-holomorphic) maps by 2tf(W\ Y) (3fG(W; Y)). ƒ is said to be amply 
bounded if for each continuous seminorm /? on Y, /? o ƒ is locally bounded. 

AMS (MOS) subject classifications (1970). Primary 46E10, 58B10. 
Key words and phrases. Infinite dimensional holomorphy, composition, G-holomorphy, 

ample boundedness, holomorphic convexity. 
1 This work is based on the author's doctoral dissertation, written under Professor 

Leopoldo Nachbin (University of Rochester, 1973). It was supported in part by an 
NSF Traineeship. 

Copyright © American Mathematical Society 1974 

300 


