FIXED POINTS OF ENDOMORPHISMS OF COMPACT GROUPS

BY ROBERT F. BROWN

Communicated by Glen E. Bredon, September 22, 1973

1. Introduction. Let G be a compact, connected Lie group and denote its real Čech cohomology by $H^*(G)$. Then $H^*(G)$ is an exterior algebra with generators $1=z_0, z_1, z_2, \dots, z_{\lambda}$; where, by a theorem of Hopf [3], λ is equal to the rank of G (the dimension of a maximal torus). This paper announces some improvements of Hopf's result. The details will be published elsewhere.

2. Fixed point groups. For a set X and a function $f: X \to X$, let $\Phi(f)$ denote the set of fixed points of f: those $x \in X$ for which f(x)=x. If X is a topological group and f is a homomorphism, we will use the symbol $\Phi_0(f)$ for the component of the group $\Phi(f)$ which contains the identity element of X.

We consider a compact, connected Lie group G and let h be an automorphism of G. Choose algebra generators $1=z_0, z_1, z_2, \dots, z_{\lambda}$ for $H^*(G)$ and let $H^*(G)$ denote the linear span of $z_1, z_2, \dots, z_{\lambda}$. The automorphism h^* of $H^*(G)$ induced by h takes $H^*(G)$ to itself; let h^* denote the restriction of h^* to $H^*(G)$.

Our main result is

THEOREM 1. Let G be a compact, connected Lie group and let h be an automorphism of G. Then the rank of the Lie group $\Phi_0(h)$ is equal to the dimension of the vector space $\Phi(h^*)$.

Note that Theorem 1 reduces to Hopf's theorem when h is the identity function.

One might suspect that Theorem 1 is a consequence of some more intimate relationship between $H^*(\Phi_6(h))$ and $\Phi(h^*)$. However, let $g \in G$ be a regular element and define $h(x)=g^{-1}xg$, for $x \in G$, then h induces the identity isomorphism in cohomology, so $\Phi(h^*)=H^*(G)$; while $\Phi_0(h)$ is a maximal torus of G. Thus the possibilities for such a relationship are very limited.

AMS (MOS) subject classifications (1970). Primary 57F10; Secondary 22B05, 22C05, 22D35, 22E15, 22E99.