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1. Introduction. Let G be a compact, connected Lie group and denote 
its real Cech cohomology by H*(G). Then H*(G) is an exterior algebra 
with generators l = z 0 , zl9 z2, • • • , zk\ where, by a theorem of Hopf [3], 
X is equal to the rank of G (the dimension of a maximal torus). This paper 
announces some improvements of Hopf's result. The details will be pub
lished elsewhere. 

2. Fixed point groups. For a set X and a function ƒ : X-+X9 let <D( ƒ ) 
denote the set of fixed points off: those x e Xfov which f(x)=x. If X is a 
topological group and ƒ is a homomorphism, we will use the symbol 
4>0(/) for the component of the group $ (ƒ) which contains the identity 
element of X. 

We consider a compact, connected Lie group G and let h be an auto
morphism of G. Choose algebra generators l = z 0 , zl9 z29 • * • , zx for 
H*(G) and let H*(G) denote the linear span of zl9 z2, • • • , zA. The auto
morphism /** of H*(G) induced by h takes H*(G) to itself; let /r* denote 
the restriction of ft* to H*(G). 

Our main result is 

THEOREM 1. Let G be a compact, connected Lie group and let h be an 
automorphism of G. Then the rank of the Lie group O0(A) is equal to the 
dimension of the vector space 0(/r*). 

Note that Theorem 1 reduces to Hopf's theorem when h is the identity 
function. 

One might suspect that Theorem 1 is a consequence of some more 
intimate relationship between #*(<t>0(ft)) and 0(A*). However, let g G G 
be a regular element and define h(x)=g~1xg, for x e G, then h induces the 
identity isomorphism in cohomology, so 0(A*) = uT*(G); while O0(A) is 
a maximal torus of G. Thus the possibilities for such a relationship are 
very limited. 
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