FINITE SUBGROUPS OF FINITE DIMENSIONAL DIVISION ALGEBRAS

BY BURTON FEIN¹ AND MURRAY SCHACHER²

Communicated by George Seligman, September 29, 1973

Let D be a finite dimensional division algebra with center K and let G be a finite odd order subgroup of the multiplicative group D^* of D. This note is concerned with the following:

CONJECTURE. If K contains no nonidentity odd order roots of unity, then G is cyclic.

We announce here some results and raise several questions about this conjecture. In [3] and [4] we proved this conjecture if K is either an algebraic number field or the completion of an algebraic number field. (The converse is also proved in [4]; if K is an algebraic number field which does contain an odd order nonidentity root of unity, then there is a finite dimensional division algebra central over K containing a noncyclic odd order subgroup.) In this note we will consider the more general case where K is an arbitrary field of characteristic zero.

By a K-division ring we mean a finite dimensional division algebra with center K. Let G be a finite subgroup of the multiplicative group of a K-division ring D and, for L a subfield of D, denote by $\mathscr{V}_L(G)$ the division subring of D generated by L and G. Let \mathscr{Z}_L denote the center of $\mathscr{V}_L(G)$ and e_L the exponent of $\mathscr{V}_L(G)$. The following result is basic to our approach to the above conjecture:

THEOREM 1. With notation as above, let ζ be a primitive e_L th root of unity and let ϕ be an L-automorphism of $\mathscr{V}_L(G)$. Then $\phi(\zeta) = \zeta$.

The proof of Theorem 1 involves an explicit computation using the description of $\mathscr{V}_Q(G)$ given by Amitsur in [2], where Q denotes the rational field.

Suppose G is a finite subgroup of the K-division ring D. Then $C_D(\mathscr{Z}_K) \cong \mathscr{V}_K(G) \otimes_{\mathscr{Z}_K} A$ where A is a \mathscr{Z}_K -division ring and $C_D(\mathscr{Z}_K)$ denotes the centralizer in D of \mathscr{Z}_K . Suppose $\zeta \notin K$ where ζ is a primitive e_K th root of unity. Then there is an automorphism ϕ of $C_D(\mathscr{Z}_K)$ with $\phi(\zeta) \neq \zeta$

AMS (MOS) subject classifications (1970). Primary 16A40; Secondary 16A72.

¹ Research supported in part by NSF Grant GP-29068.

² Research supported in part by NSF Grant GP-28696.

Copyright @ American Mathematical Society 1974