ACTIONS OF REDUCTIVE GROUPS ON REGULAR RINGS AND COHEN-MACAULAY RINGS

BY MELVIN HOCHSTER AND JOEL L. ROBERTS ${ }^{1}$

Communicated by Dock S. Rim, August 30, 1973
0 . The main results. This note is an announcement of the results below, whose proofs will appear separately [7].

Main Theorem. Let G be a linearly reductive affine linear algebraic group over a field K of arbitrary characteristic acting K-rationally on a regular Noetherian K-algebra S. Then the ring of invariants $R=S^{G}$ is Cohen-Macaulay.

Theorem. If S is a regular Noetherian ring of prime characteristic $p>0$, and R is a pure subring of S (i.e. for every R-module $M, M \rightarrow M \otimes_{R} S$ is injective), e.g. if R is a direct summand of S as R-modules, then R is Cohen-Macaulay.

The proofs utilize results of interest in their own right:
Proposition A. Let L be a field, y_{0}, \cdots, y_{m} indeterminates over $L, S=L\left[y_{0}, \cdots, y_{m}\right]$, and $Y=\operatorname{Proj}(S)=\boldsymbol{P}_{L}^{m}$. Let K be a subfield of L, and let R be a finitely generated graded K-algebra with $R_{0}=K$. Let $h: R \rightarrow S$ be a K-homomorphism which multiplies degrees by d. Let P be the irrelevant maximal ideal of R, and let $X=\operatorname{Proj}(R)$. Let $U=Y-V(h(P) S)$. Let $\varphi=h^{*}$ be the induced K-morphism from the quasi-projective L-variety U to the projective K-scheme X. Then $\varphi_{i}^{*}: H^{i}\left(X, \mathcal{O}_{X}\right) \rightarrow H^{i}\left(U, \mathcal{O}_{U}\right)$ is zero for $i \geqq 1$.

Proposition A^{\prime}. Let (R, P) be a local ring of prime characteristic $p>0$ and let h be a homomorphism of R into a regular Noetherian domain S. Suppose that for a certain i the local cohomology module $H_{P}^{i}(R)$ has finite length. Then if $i \neq 0$ or $h(P) \neq 0$, the induced homomorphism $H_{P}^{i}(R) \rightarrow$ $H_{P S}^{i}(S)$ is zero.

1. Applications and corollaries. We note that the Main Theorem is stronger than the prior conjectures $[2, \S 0]$ or $[3, \mathrm{p} .56]$, where S was
[^0]
[^0]: AMS (MOS) subject classifications (1970). Primary 14M05, 20G05, 14B15, 13D05; Secondary 13H05, 13H10.
 ${ }^{1}$ Both authors were supported in part by NSF grant GP-37689.

