STABLE HOMOTOPY THEORY OVER A FIXED BASE SPACE

BY C. A. ROBINSON

Communicated by Glen E. Bredon, August 30, 1973

A spectral sequence which may be regarded as an 'Adams spectral sequence over a fixed space B' has been constructed by J. F. McClendon [6] and J.-P. Meyer [8]. This note describes a generalization in which there is no need for any orientability assumptions. The construction is carried out in a suitable stable category, which may be of independent interest. An application to the enumeration of immersions is given. Details will appear elsewhere.

1. A stable category. Let Ex-B denote the category of ex-spaces (in the terminology of [4]) of the path-connected complex B. It is known that the corresponding homotopy category (Ex- $B)_h$ exhibits certain stability properties [4, Theorem 6.4]. One can construct a category \mathcal{S}/B , in which the corresponding stable homotopy theory can be investigated, by formalizing the notion of a 'bundle' over B with fibre a CW spectrum (in the sense of [3], [11]). The details are as follows. If F_1 , F_2 , F are objects of the category \mathcal{S} of CW spectra, there is a simplicial set of morphisms $Mor_{\mathcal{S}}(F_1, F_2)$; and $Mor_{\mathcal{S}}(F, F)$ is a simplicial monoid whose invertible elements form a simplicial group $Aut_{\mathcal{S}}F$. We take B to be a simplicial set rather than a space.

DEFINITION. An *object* of \mathcal{S}/B is a pair (F, ξ) where $F \in \text{ob } \mathcal{S}$ and ξ is a principal simplicial $\text{Aut}_{\mathcal{S}}$ F-bundle over B.

A morphism from (F_1, ξ_1) to (F_2, ξ_2) is a section of the simplicial bundle with fibre $\mathrm{Mor}_{\mathscr{S}}(F_1, F_2)$ associated to the principal $(\mathrm{Aut}_{\mathscr{S}}F_1 \times \mathrm{Aut}_{\mathscr{S}}F_2)$ -bundle $\xi_1 \times \xi_2$ over B.

This category inherits much of the usual machinery of stable homotopy theory from Boardman's category \mathcal{S} ; for example, it has an invertible translation-suspension functor S_B , arbitrary wedges, and smash-product functors. The corresponding homotopy category $(\mathcal{S}/B)_h$ is additive, and triangulated with respect to S_B , and the axioms of Puppe [9] hold. There is a stabilization functor $(Ex-B)_h \rightarrow (\mathcal{S}/B)_h$ which is bijective on morphism-sets $[X, Y]_B$ of $(Ex-B)_h$ whenever X is a relative CW ex-space of B, Y is an ex-space fibred over B (with fibre F, say) and $\dim(X-B) \leq 2 \operatorname{conn} F$.

2. A cohomology theory on \mathcal{S}/B . Let p be a prime, and let $\rho: \pi_1 B \to GL(V)$ be a semisimple representation of $\pi_1 B$ on a finite-dimensional vector

AMS (MOS) subject classifications (1970). Primary 55H15; Secondary 55B25, 55G35, 57D40.