BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY Volume 80, Number 1, January 1974

ON HILBERT TRANSFORMS ALONG CURVES

BY ALEXANDER NAGEL,¹ NESTOR RIVIÈRE² AND STEPHEN WAINGER¹

Communicated by E. Stein, June 1, 1973

Let $\gamma(t)$, $-\infty < t < \infty$, be a smooth curve in \mathbb{R}^n . For f in $C_0^{\infty}(\mathbb{R}^n)$ set

(1)
$$Tf(x) = \lim_{\epsilon \to \infty, N \to \infty} \int_{\epsilon \le |t| \le N} \frac{f(x - \gamma(t))}{t} dt.$$

Tf is the Hilbert transform of f along the curve $\gamma(t)$. E. M. Stein [2] raised the following general question: For what values of p and what curves $\gamma(t)$ is *Tf* a bounded operator in L^p ? If $\gamma(t)$ is a straight line it is well known that T is bounded for 1 . Stein and Wainger [3] proved that the operator is bounded for <math>p=2 if

$$\gamma(t) = (|t|^{\alpha_1} \operatorname{sgn} t, \cdots, |t|^{\alpha_n} \operatorname{sgn} t), \qquad \alpha_i > 0.$$

Here we show that Tf is a bounded operator in L^p for some p other than 2 and some nontrivial, nonlinear γ 's. We prove

THEOREM 1. Let $\gamma(t) = (|t|^{\alpha_1} \operatorname{sgn} t, |t|^{\alpha_2} \operatorname{sgn} t) \alpha_1 > 0$, $\alpha_2 > 0$. Then Tf is bounded in L^p for $\frac{4}{3} .$

SKETCH OF THE PROOF. The transformation (1) may be expressed as a multiplier transformation. In our case,

(2)
$$(Tf)^{(x, y)} = m(x, y)f(x, y)$$

where

(3)
$$m(x, y) = \lim_{\epsilon \to \infty, N \to \infty} \int_{\epsilon \le |t| \le N} \exp\{i |t|^{\alpha_1} \operatorname{sgn} tx + i |t|^{\alpha_2} \operatorname{sgn} ty\} \frac{dt}{t}$$

([^] denotes Fourier transform).

By a change of variables we may assume $\alpha_1 = 1$ and $\alpha_2 \ge 1$. Furthermore we may assume $\alpha_2 > 1$, for otherwise we have the case that $\gamma(t)$ is a straight

AMS (MOS) subject classifications (1970). Primary 42A18, 42A40.

¹ Partially supported by an NSF grant at the University of Wisconsin.

² Partially supported by an NSF grant at the University of Minnesota, GP-15832.

Copyright © American Mathematical Society 1974