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Let y(t), —oo<t<oo, be a smooth curve in Rn. For/ in Co(Rn) set 

(1) T/Oc)- Hm f tt^^dt. 
e-+oo,N-+ao Js^\t\^N t 

Tf is the Hubert transform of ƒ along the curve y{t). E. M. Stein [2] 
raised the following general question: For what values of/? and what 
curves y(t) is Tf a bounded operator in Z7? If y(t) is a straight line it is 
well known that Tis bounded for 1 <p< oo. Stein and Wainger [3] proved 
that the operator is bounded for p=2 if 

y(0 = (|fr sgn t, • • •, \t\an sgn 0, ^ > 0. 

Here we show that Tf is a bounded operator in Lv for some/? other than 2 
and some nontrivial, nonlinear y's. We prove 

THEOREM 1. Let y(0=(|*|aisgnf, |*|a2sgn0<*i>0, a2>0. Then Tf is 
bounded in L^for |</?<4. 

SKETCH OF THE PROOF. The transformation (1) may be expressed as a 
multiplier transformation. In our case, 

(2) (Tf)\x,y) = rn(x,y)f(x9y) 

where 

(3) m(x, y) = lim exp{i |*|ai sgn tx + i |f|a2 sgn ty) — 
e->oo,iV-*oo Je^\t\^N t 

( denotes Fourier transform). 
By a change of variables we may assume ax=l and a 2 ^ l . Furthermore 

we may assume a2> 1, for otherwise we have the case that y(t) is a straight 
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